欢迎来到天天文库
浏览记录
ID:59327599
大小:20.50 KB
页数:5页
时间:2020-09-04
《函数及其-表示课件.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数及其表示方法补充内容 设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x). 注意: (1)函数一定是映射,映射不一定是函数; (2)函数三要素:定义域、值域、对应法则; (3)B中的元素未必有原象,即使有原象,也未必唯一; (4)原象集合=定义域,值域=象集合.函数与映射的关系函数是一种特殊的映射.映射与函数概念间的关系可由下表给出.映射函数集合A,B可为任何集合,其元素可以是物,人,数等函数的定义域和值域均为非空的数集对于集合A中任一元素,在集合B中都有唯一确定的像对函数的定义域中每一个,值域中都有唯一确定的
2、值与之对应对集合B中任一元素,在集合A中不一定有原像对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应函数是特殊的映射,映射是函数的推广.〖注意〗(1)函数实际上就是集合A到集合B的一个特殊对应:A→B。这里A,B为非空的数集。(2)A:定义域,原象的集合;{
3、∈A}:值域,象的集合,其中{
4、∈A}(B;:对应法则,∈A,∈B(3)函数符号:=,是的函数,简记知识点一、函数的概念1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y
5、=f(x),xA. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)
6、xA}叫做函数的值域. 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 思路点拨:由函数f(x)符号的含义,f(3)表示在x=3时,f(x)表达式的函数值. 解:f(3)=3×32+5×3-2=27+15-2=40; ; ; .2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这
7、两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 1.下列各组函数是否表示同一个函数? (1) (2) (3) (4) 思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立. 解:(1),对应关系不同,因此是不同的函数; (2)的定义域不同,因此是不同的函数; (3)的定义域相同,对应关系相同,因此是相同的函数; (4)定义域相同,对应关系相同,自变量用不同字面表示,仍为同一函数. 总结升华:函数概念含有三个要素,即定义域,值域和对应法则,其中核心
8、是对应法则,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是: (1)定义域不同,两个函数也就不同; (2)对应法则不同,两个函数也是不同的. (3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: {x
9、a≤x≤b}=[a,b]; ; ; .知识点二、函数的表示法1.函数的表示方法表示函数的方法,常用的有解析法、列表法和图象法三
10、种.⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如,s=60,A=,S=2,y=a+bx+c(a0),y=(x2)等等都是用解析式表示函数关系的.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量的函数关系.例如,学生的身高单位:厘米学号123456789身高125135140156138172167158169数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.
11、公共汽车上的票价表优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用函数图象表示两个变量之间的关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.2.分段函数: 分段函数的解析式不能写成几个不同的
此文档下载收益归作者所有