一元二次方程根与系数的关系备课讲稿.ppt

一元二次方程根与系数的关系备课讲稿.ppt

ID:59253416

大小:948.00 KB

页数:29页

时间:2020-09-27

一元二次方程根与系数的关系备课讲稿.ppt_第1页
一元二次方程根与系数的关系备课讲稿.ppt_第2页
一元二次方程根与系数的关系备课讲稿.ppt_第3页
一元二次方程根与系数的关系备课讲稿.ppt_第4页
一元二次方程根与系数的关系备课讲稿.ppt_第5页
资源描述:

《一元二次方程根与系数的关系备课讲稿.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、根与系数关系1.一元二次方程的一般形式是什么?3.一元二次方程的根的情况怎样确定?2.一元二次方程的求根公式是什么?已知:如果一元二次方程的两个根分别是、。求证:推导:如果一元二次方程的两个根分别是、,那么:这就是一元二次方程根与系数的关系,也叫韦达定理。1.3.2.4.5.口答下列方程的两根之和与两根之积。1.已知一元二次方程的两根分别为,则:2.已知一元二次方程的两根分别为,则:3.已知一元二次方程的的一个根为1,则方程的另一根为___,m=___:4.已知一元二次方程的两根分别为-2和1,则:p

2、=__;q=__1、下列方程中,两根的和与两根的积各是多少?2、设x1、x2是方程利用根与系数的关系,求下列各式的值:返回已知是方程的两个实数根,求的值。解:根据根与系数的关系:例2、利用根与系数的关系,求一元二次方程两个根的;(1)平方和;(2)倒数和解:设方程的两个根是x1x2,那么返回例1.不解方程,求方程的两根的平方和、倒数和。运用根与系数的关系解题二、典型例题例题1:已知方程x2=2x+1的两根为x1,x2,不解方程,求下列各式的值。(1)(x1-x2)2(2)x13x2+x1x23(3)解

3、:设方程的两根分别为和,则:而方程的两根互为倒数即:所以:得:2.方程的两根互为倒数,求k的值。设X1、X2是方程X2-4X+1=0的两个根,则X1+X2=___X1X2=____,X12+X22=;(X1-X2)2=;基础练习1、如果-1是方程2X2-X+m=0的一个根,则另一个根是___,m=____。2、设X1、X2是方程X2-4X+1=0的两个根,则X1+X2=___,X1X2=____,X12+X22=(X1+X2)2-___=___(X1-X2)2=(___)2-4X1X2=___3、判断

4、正误:以2和-3为根的方程是X2-X-6=0()4、已知两个数的和是1,积是-2,则这两个数是_____。X1+X22X1X2-3411412×2和-1基础练习(还有其他解法吗?)1.已知方程的一个根是2,求它的另一个根及k的值.解:设方程的两个根分别是、,其中。所以:即:由于得:k=-7答:方程的另一个根是,k=-7例题2:(1)若关于x的方程2x2+5x+n=0的一个根是-2,求它的另一个根及n的值。(2)若关于x的方程x2+kx-6=0的一个根是-2,求它的另一个根及k的值。1.已知一元二次方程

5、的的一个根为1,则方程的另一根为___,m=___:2、已知方程的一个根是1,求它的另一个根和m的值。例2.已知方程的两根为、,且,求k的值。例题4、已知关于x的方程x2+(2k+1)+k2-2=0的两根的平方和比两根之积的3倍少10,求k的值.补充规律:两根均为负的条件:X1+X2且X1X2。两根均为正的条件:X1+X2且X1X2。两根一正一负的条件:X1+X2且X1X2。当然,以上还必须满足一元二次方程有根的条件:b2-4ac≥0例6方程x2(m1)x2m10求m满足什么条件时,方程的两

6、根互为相反数?方程的两根互为倒数?方程的一根为零?解:(m1)24(2m1)m26m5①∵两根互为相反数∴两根之和m10,m1,且0∴m1时,方程的两根互为相反数.②∵两根互为倒数m26m5,∴两根之积2m11m1且0,∴m1时,方程的两根互为倒数.③∵方程一根为0,∴两根之积2m10且0,∴时,方程有一根为零.引申:1、若ax2bxc0(a00)(1)若两根互为相反数,则b0;(2)若两根互为倒数,则ac;(3)若一根为0,

7、则c0;(4)若一根为1,则abc0;(5)若一根为1,则abc0;(6)若a、c异号,方程一定有两个实数根.2.应用一元二次方程的根与系数关系时,首先要把已知方程化成一般形式.3.应用一元二次方程的根与系数关系时,要特别注意,方程有实根的条件,即在初中代数里,当且仅当时,才能应用根与系数的关系.1.一元二次方程根与系数的关系是什么?总结归纳请同学们在课后通过以下几道题检测自己对本节知识的掌握情况:P36第6题P38第11、12题本堂课结束了,望同学们勤于思考,学有所获。Goodbye

8、!Seeyounexttime!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。