小学数学线段图的呈现及应用.doc

小学数学线段图的呈现及应用.doc

ID:59231707

大小:14.50 KB

页数:6页

时间:2020-10-30

小学数学线段图的呈现及应用.doc_第1页
小学数学线段图的呈现及应用.doc_第2页
小学数学线段图的呈现及应用.doc_第3页
小学数学线段图的呈现及应用.doc_第4页
小学数学线段图的呈现及应用.doc_第5页
资源描述:

《小学数学线段图的呈现及应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、小学数学线段图的呈现及应用  近期,全程参与了市教研室组织的“学科带头人展示活动”,观摩了两节“解决问题策略”的公开课,分别是苏教版(下同)小学数学三年级下册“从问题想起”和四年级下册“画图的策略”。活动之后,教研室组织了解读教材活动,探讨公开课背后更本源的内容。解读中的争论焦点在于两节公开课中都涉及到的线段图:教材编排的线段图究竟价值何在?以怎样的方式呈现线段图更为合适?这两个核心问题引发了大家的热议,也引起了笔者的关注与思考。  一、解读“线段图”,应具有纵向视野  数学知识最显著的特点是它的前后关联性,其

2、形成与发展也是由易到难、由浅入深逐步推进的。如线段图的出现,并非一蹴而就,而是依据学生的认知规律和知识的特点逐层渗透的。  1.厘清“线段图”的发展趋势  纵观教材中编排的“线段图”,由最初的直条“遮盖”具体数量,逐步过渡到用直条概括数量的多少,最后再用线段表示数量的多少及关系,体现了由易到难、由具体到抽象的特点,具体分析如下。  (1)用直条“遮盖”数量及关系。教材中第一次用直条的方式表示数量及关系,是在二年级上册“表内乘除法的练习”中(图1)。意在引导学生发现问题的本质是“求8个3相加的和是多少?”这里的直

3、条具有“遮盖”具体数量的作用,学生在计算后还能用数一数的方法验证直条后面的五角星个数。  (2)用直条概括数量及关系。第二次出现直条图是在二年级下册“两位数加减法”中(图2)。用不同颜色的直条表示不同的数量,且隐藏的个数较多,不容易再像第一次那样可以去数个数,这里的直条具有概括的作用。学生根据文字的叙述与直条的长短来理解两种数量之间的关系,从而分析和解决问题。  用线段表示数量及关系。教材正式出现线段图,是在三年级上册“从条件想起”(图3)中。这是首次用简洁的线段图表示条件与问题,让学生根据条件填写线段图中的数

4、据,借助线段图从条件出发分析数量关系。在三年级下册“从问题想起”(图4)中,让学生根据实际情境中的条件补足线段图及问题,借助线段图从问题出发分析数量关系。在四年级下册“用画图的策略解决问题”(图5)中,让学生根据实际问题中的两个未知量的关系补全线段图,根据线段图从不同角度分析数量关系。  2.把准各阶段“线段图”的核心  理清教材编排“线段图”的意图是第一要义,接下来就要结合学生的认知特点和知识的发展线索,合理呈现线段图,借助线段图来分析数量关系,培养学生表征信息、分析问题和解决问题的能力。  (1)从条件出发

5、思考。三年级上册“从条件出发思考”(图3)中,因呈现的条件较多,关系较复杂,需要借助线段图来分析绿花、黄花和红花之间的关系:已知“绿花有12朵”,可以用一条线段表示绿花的朵数;已知“黄花的朵数是绿花的2倍”,那么表示黄花朵数的线段应是2条表示绿花朵数的线段那么长;已知“红花的朵数比黄花多7朵”,因此表示红花朵数的线段应比表示黄花朵数的线段稍长一些。问题是求“红花有多少朵?”应把“?”标示在表示红花朵数的线段下面。这里的线段图是根据条件之间的关系逐步呈现的,根据直观形象的图示,学生容易发现其中的数量关系:“绿花的

6、朵数×2=黄花的朵数”,“黄花的朵数+7=红花的朵数”。使学生感受到线段图能直观地表征出三种花朵数之间的关系,并能从已知条件“绿花有12朵”出发,一步步推算出所求的问题。体验到“从条件出发”分析和解决问题的过程和本质,建构起“由因至果”的思考模型,积累解决问题的经验。  (2)从问题出发思考。三年级下册“从问题出发思考”(图4)中,要求“买一套衣服要用多少元?”需要知道两个条件:一件上衣的价钱和一条裤子的价钱,其中裤子的价钱已知,上衣的价钱未知,因此要先求出上衣的价钱。可以根据“上衣的价格是裤子的3倍”画出表示

7、上衣的线段,应是3段表示裤子价钱的线段那么长。问题“买一套衣服要用多少元?”可以用大括号把表示裤子价钱的线段和表示上衣价钱的线段合并起来,再标出“?”。这里的线段图是从问题出发,一步步寻找所需要的条件,再根据条件之间的关系逐步呈现的。根据直观图示,学生容易想到其中的数量关系:“一套衣服要用的元数=裤子的价钱+上衣的价钱”,上衣的价钱不知道,再用“裤子的价钱×3=上衣的价钱”求得。使学生体会到“从问题出发”分析问题的过程和本质,建构起“执果索因”的思考模型,积累更丰富的解决问题的经验。  (3)用画图的策略解决问

8、题。四年级下册“用画图的策略解决问题”(图5)中,问题涉及两个未知量,条件中已知两个未知量之间的和与差的关系。在教学时要充分激活学生已有的经验积累,唤起学生画线段图来表征数量关系的需要。这里,要把画线段图作为一个重要的教学目标,同时线段图也是帮助学生分析数量关系的思考媒介。从直观形象的图示中,学生可以发现两种不同的思路:从总数中去掉多的12枚,就是2个小宁的枚数,再分别求出小宁和小春的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。