欢迎来到天天文库
浏览记录
ID:59201211
大小:401.00 KB
页数:10页
时间:2020-09-10
《建筑力学3轴向拉伸和压缩.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3章 轴向拉伸和压缩一、基本要求1.熟练掌握截面法求轴力,绘轴力图。2.掌握轴向拉、压杆的强度计算。3.熟练掌握轴向拉、压时的胡克定律及变形、位移计算。4.了解弹性模量E、泊松系数μ。5.了解材料力学性能的主要指标。6.熟练掌握一次超静定杆系的求解。7.掌握“用切线代替圆弧”法求简单珩架节点位移的方法。二、内容提要1.轴向拉伸(压缩)的力学模型(图1)受力特点 作用于杆件上的外力合力的作用线与杆件轴线重合。变形特点 杆件产生沿轴线方向的伸长或缩短。2.内力定义 在外力作用下,杆件内部各部分之间的相互作用力。根据连续性假
2、设,内力是连续分布于截面上的分布力系。分布力系的合力(或合力偶)简称为内力。轴力 轴向拉压时,杆件横截面上分布力系的合力的作用线与杆件轴线重合,故称为轴力。用符号N表示,单位为牛顿(N)。拉力为正,压力为负。轴力图 表示轴力沿杆件轴线变化规律的图线。3.应力定义 杆件截面上某点处分布内力的集度称为该点处的应力P。正应力 垂直于截面的应力分量,用符号σ表示。剪应力 切于截面的应力分量,用符号τ表示。1)拉压杆横截面上的应力拉压杆横截面上只有正应力σ,且为均匀分布,其计算公式为式中N为该截面的轴力,A为横截面的面积。正负号规
3、定 拉应力为正,压应力为负。2)拉压杆斜截面上的应力(如图2)拉压杆任意斜截面(α面)上的应力为均匀分布,其计算公式为全应力 pα=σcosα正应力 σα=σcos2α剪应力 τα=正负号规定:α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 拉应力为正,压应力为负。 对脱离体内一点产生顺时针力矩的为正,反之为负。4、材料的力学性能1)胡克定律:σ=Eε2)弹性极限σe、比例极限σp、屈服极限σs和强度极限σb。3)延伸率δ、断面伸缩率ψ。5、拉压杆的强度条件式中[σ]为杆件材料的许用应力,塑性材料:脆性
4、材料:其中ns,nb称为安全系数。6、拉压杆件的变形计算1)变形杆件受到轴向拉力时,轴向伸长,横向缩短(如图3);受到轴向压力时,轴向缩短,横向伸长。轴向绝对变形:轴向线应变:横向绝对变形:横向线应变:1)胡克定律的第二种形式:EA称为杆件的抗拉压刚度。对于N或A沿杆轴线x变化的拉压杆件,其轴向变形应分段计算后再求代数和,或按积分计算(当N与A随轴线x连续变化时):7、轴向拉伸或压缩的变形能杆件在外力作用下因变形而存储的能量,称为变形能。在线弹性范围内,杆件轴向拉伸或压缩时的变形能为:变形比能 杆件单位体积内储存的变形能
5、。轴向拉压时的弹性变形比能为:8、拉压超静定问题在拉压杆件结构中,当未知约束力数多于独立的平衡方程数时,称为超静定问题。求解超静定问题需要综合静力平衡方程、变形协调方程和物理方程。一般步骤如下:(1)分析结构的约束力数和独立平衡方程数,确定超静定次数;(2)根据结构的约束条件作出变形位移图,建立变形协调方程;(3)根据物理条件,即变形与力的关系,将杆件变形用载荷及未知约束力表示,并代入变形协调方程,得到补充方程,与静力平衡方程联立解之。三、典型例题分析例1 如图所示,一变截面圆钢杆ABCD。已知P1=20kN,P2=35
6、kN,P3=35kN,L1=L3=300mm,L2=400mm,d1=12mm,d2=16mm,d3=24mm,弹性模量E=210GPa。试求:1.I-I,II-II,及III-III截面上的轴力,并作AD杆的轴力图;2.杆的最大正应力σmax;3.B截面的轴向位移uB及AD杆的伸长ΔLAD;解:1.求轴力及画轴力图用截面法分别在I-I、II-II及III-III截面处将杆件截开,保留右边部分,截面处都加正方向的轴力N1-1、N2-2及N3-3。图b分别表示三个保留部分的受力图。由轴向静力平衡条件,分别可求得:其中“-”
7、号的轴力表示压力。显然N1-1、N2-2、N3-3分别表示了AB、BC、CD段杆内任意截面上的轴力,因此其轴力图如图C所示。2.求最大正应力σmax可见最大正应力发生在AB段,即3.B截面的轴向位移uB及AD杆的伸长ΔLAD例2 刚性梁ABC由圆杆CD悬挂在C点,B端作用集中载荷P=25kN,已知CD杆的直径d=20mm,许用应力[σ]=160MPa,试校核CD杆的强度,并求:1.结构的许用载荷[P];2.若P=50kN,设计CD杆的直径d。解:1.作AB杆的部分受力图如图b所示,其平衡条件为:CD杆的应力:因为σCD<
8、[σ],所以CD杆安全。2.许用载荷[P]3.若P=50kN,设计CD杆的直径d例3 由刚性杆AB及两弹性杆EC及FD组成的结构,在B端受到力F作用。两弹性杆的抗拉压刚度分别为E1A1和E2A2。试求杆EC和FD的内力。解:该结构为一次超静定,需要一个补充方程。为此,从下列三方面来分析。(h)(1)静力方面 取脱离体
此文档下载收益归作者所有