欢迎来到天天文库
浏览记录
ID:59158265
大小:146.00 KB
页数:10页
时间:2020-09-15
《第五章相交线与平行线123小节.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【本讲教育信息】一. 教学内容:第五章:相交线与平行线 1、2、3小节 二. 教学要求(一)结合具体情境,了解邻补角、对顶角的概念,知道对顶角相等;了解垂线、垂线段等概念,知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线,了解垂线段最短的性质,体会点到直线距离的意义并会度量点到直线的距离; (二)了解平行线的概念,知道平行公理及其推论,会用三角尺和直尺过直线外一点画这条直线的平行线;会识别同位角、内错角、同旁内角,掌握两直线平行的判定方法和性质; (三)能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,体会研究几何图形
2、的意义;在观察、操作、想象、说理、交流的过程中,发展空间观念,初步形成积极参与数学活动、与他人合作交流的意识,激发学习空间与图形的兴趣。 三. 重点及难点(一)重点1. 理解相交线的定义、对顶角的定义和性质、邻补角的定义,相交线中的同位角、内错角、同旁内角的认识和区分;2. 理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;3. 理解平行线的概念,正确地表示平行线,会利用三角尺、直尺画平行线,理解平行公理和平行公理的推论;4. 掌握两直线平行的判定方法,学会利用直线平行的条件说理和证明;5. 掌握平行线的性质,综合运用平行线的性质和判定证明和计算。 (二)难点
3、1. 正确地在图形中确定同位角、内错角和同旁内角;2. 运用垂线的性质解决实际问题;3. 理解平行线的概念、平行公理和平行公理的推论;4. 灵活利用直线平行的条件证明两直线平行;5. 综合运用平行线的性质和判定证明和计算。 四. 课堂教学(本章知识结构框图)【知识要点】(一)相交线1. 相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点。如图1所示,直线AB与直线CD相交于点O。 图1 图2 图
4、32. 对顶角的定义若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角。如图2所示,∠1与∠3、∠2与∠4都是对顶角。注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3)两条相交线形成2对对顶角。3. 对顶角的性质对顶角相等。4. 邻补角的定义如果把一个角的一边反向延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°。 (二)垂线1. 垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直
5、,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 图4如图4所示,直线AB与CD互相垂直,垂足为点O,则记作AB⊥CD于点O。其中“⊥”是“垂直”的记号;是图形中“垂直”(直角)的标记。注意:垂线的定义有以下两层含义:(1)∵AB⊥CD(已知) (2)∵∠1=90°(已知) ∴∠1=90°(垂线的定义) ∴AB⊥CD(垂线的定义)2. 垂线的性质(1)性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与
6、已知直线垂直,即过一点有且只有一条直线与已知直线垂直。(2)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。即垂线段最短。3. 点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 图5 图6如图5所示,m 的垂线段PB 的长度叫做点P 到 直线m 的距离。4. 垂线的画法(工具:三角板或量角器)5. 画已知线段或射线的垂线(1)垂足在线段或射线上(2)垂足在线段的延长线或射线的反向延长线上 (三)“三线八角”两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示
7、。(1)同位角:可以发现∠1与∠5都处于直线的同一侧,直线、的同一方,这样位置的一对角就是同位角。图中的同位角还有∠2与∠6,∠3与∠7,∠4与∠8。(2)内错角:可以发现∠3与∠5都处于直线的两旁,直线、的两方,这样位置的一对角就是内错角。图中的内错角还有∠4与∠6。(3)同旁内角:可以发现∠4与∠5都处于直线的同一侧,直线、的两方,这样位置的一对角就是同旁内角。图中的同旁内角还有∠3与∠6。 (四)平行线1. 平行线的概念在同一平面内,不相交的两条直线叫做平行线。注意:(1)在平行线的定义中,“在同一平面内”是个重要前提;(2)必须是两条直线;(3)同一平面内
8、两条直线的
此文档下载收益归作者所有