资源描述:
《用粒子群算法求解多目标优化问题的Pareto解.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、粒子群算法程序ticD=10;%粒子群中粒子的个数%w=0.729;%w为惯性因子wmin=1.2;wmax=1.4;c1=1.49445;%正常数,成为加速因子c2=1.49445;%正常数,成为加速因子Loop_max=50;%最大迭代次数%初始化粒子群fori=1:DX(i)=rand(1)*(-5-7)+7;V(i)=1;f1(i)=X(i)^2;f2(i)=(X(i)-2)^2;endLoop=1;%迭代计数器whileLoop<=Loop_max%循环终止条件%对粒子群中的每个粒子进行评价fori=1:Dk1=find(1==Xv(i,:));%找
2、出第一辆车配送的城市编号nb1=size(k1,2);%计算第一辆车配送城市的个数ifnb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号b1=sort(a1);%对找出第一辆车的顺序号进行排序G1(i)=0;%初始化第一辆车的配送量k51=[];am=[];forj1=1:nb1am=find(b1(j1)==Xr(i,:));k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量endk61
3、=[];k61=[0,k51,0];%定义第一辆车的配送路径L1(i)=0;%初始化第一辆车的配送路径长度fork11=1:nb1+1L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度endelse%如果第一辆车配送的城市个数不大于0则G1(i)=0;%第一辆车的配送量设为0L1(i)=0;%第一辆车的配送路径长度设为0endk2=find(2==Xv(i,:));%找出第二辆车配送的城市编号nb2=size(k2,2);%计算第二辆车配送城市的个数ifnb2>0%判断第二辆车配送城市个数是
4、否大于0,如果大于0则a2=[Xr(i,k2(:))];%找出第二辆车配送城市的顺序号b2=sort(a2);%对找出的第二辆车的顺序号进行排序G2(i)=0;%初始化第二辆车的配送量k52=[];bm=[];forj2=1:nb2bm=find(b2(j2)==Xr(i,:));k52(j2)=intersect(k2,bm);%计算第二辆车配送城市的顺序号G2(i)=G2(i)+g(k52(j2)+1);%计算第二辆车的配送量endk62=[];k62=[0,k52,0];%定义第二辆车的配送路径L2(i)=0;%初始化第二辆车的配送路径长度fork22=
5、1:nb2+1L2(i)=L2(i)+Distance(k62(k22)+1,k62(k22+1)+1);%计算第二辆车的路径长度endelse%如果第二辆车配送的城市个数不大于0则G2(i)=0;%第二辆车的配送量设为0L2(i)=0;%第二辆车的配送路径长度设为0endk3=find(3==Xv(i,:));%找出第三辆车配送的城市编号nb3=size(k3,2);%计算第三辆车配送城市的个数ifnb3>0%判断第三辆车配送城市个数是否大于0,如果大于0则a3=[Xr(i,k3(:))];%找出第三辆车配送城市的顺序号b3=sort(a3);%对找出的第三
6、辆车的顺序号进行排序G3(i)=0;%初始化第三辆车的配送量k53=[];cm=[];forj3=1:nb3cm=find(b3(j3)==Xr(i,:));k53(j3)=intersect(k3,cm);%计算第三辆车配送城市的顺序号G3(i)=G3(i)+g(k53(j3)+1);%计算第三辆车的配送量endk63=[];k63=[0,k53,0];%定义第三辆车的配送路径L3(i)=0;%初始化第三辆车的配送路径长度fork33=1:nb3+1L3(i)=L3(i)+Distance(k63(k33)+1,k63(k33+1)+1);%计算第三辆车的路
7、径长度endelse%如果第三辆车配送的城市个数不大于0则G3(i)=0;%第三辆车的配送量设为0L3(i)=0;%第三辆车的配送路径长度设为0endL(i)=0;%初始化每个粒子对应的配送方案总路径长度L(i)=L1(i)+L2(i)+L3(i);%计算每个粒子对应的配送方案总路径长度ifL(i)8、路径长度设为最优粒子对应的配送方案的总