欢迎来到天天文库
浏览记录
ID:59102494
大小:285.00 KB
页数:16页
时间:2020-09-15
《2013年安徽省安庆市十八校联考中考数学一模试卷及解析答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2013年安徽省安庆市十八校联考中考数学一模试卷参考答案与试题解析 一、选择题(本题共10题,每小题4分,共40分)1.(4分)抛物线y=3(x+4)2﹣9的顶点坐标是( ) A.(4,9)B.(4,﹣9)C.(﹣4,9)D.(﹣4,﹣9)考点:二次函数的性质.分析:已知解析式为抛物线的顶点式,可直接写出顶点坐标.解答:解:∵y=3(x+4)2﹣9是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(﹣4,﹣9).故选D.点评:此题主要考查了求抛物线的顶点坐标的方法.利用解析式化为y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=
2、h得出是解题关键. 2.(4分)二次函数y=2x2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为( ) A.y=2(x﹣6)2﹣7B.y=2(x+8)2﹣7C.y=2(x+8)2+5D.y=2(x﹣6)2+5考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.解答:解:∵y=2x2+4x+1=2(x+1)2﹣1,∴二次函数y=2x2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为:y=2(x+8)2﹣7.故选:B.点评:此题主要考查了函数图象的平移,用平移规律“左加右减,上加下
3、减”直接代入函数解析式求得平移后的函数解析式. 3.(4分)b是a、c的比例中项,且a:b=7:3,则b:c=( ) A.9:7B.7:3C.3:7D.7:9考点:比例线段.分析:由b是a、c的比例中项,根据比例中项的定义,即可求得a:b=b:c,又由a:b=7:3,即可求得答案.解答:解:∵b是a、c的比例中项,∴b2=ac,∴a:b=b:c,∵a:b=7:3,∴b:c=7:3.故选B.点评:此题考查了比例中项的定义,比较简单,解题的关键是熟记比例中项的定义及其变形. 4.(4分)已知α为锐角,sin(α﹣20°)=,则α=( ) A.20°B
4、.40°C.60°D.80°考点:特殊角的三角函数值.分析:根据特殊角的三角函数值直接解答即可.解答:解:∵α为锐角,sin(α﹣20°)=,∴α﹣20°=60°,∴α=80°,故选D.点评:本题考查的是特殊角的三角函数值,属较简单题目. 5.(4分)(2008•湘潭)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE:S四边形DBCE=1:8,那么AE:AC等于( ) A.1:9B.1:3C.1:8D.1:2考点:相似三角形的判定与性质.分析:由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE:S四边形DBC
5、E=1:8,得S△ADE:S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=AE2:AC2,∵S△ADE:S四边形DBCE=1:8,∴S△ADE:S△ABC=1:9,∴AE:AC=1:3.故选B.点评:此题的关键是理解相似三角形面积的比等于相似比的平方. 6.(4分)过圆内一点M的最长弦为50,最短弦长为14,则圆心O到M的距离为( ) A.B.24C.18D.29考点:垂径定理;勾股定理.专题:计算题.分析:根据题意画出图形,利用垂径定理和勾股定理进行解答.解答:解
6、:根据题意画出图形连接OD,∵AB为最长的弦,CD为最短的弦,∴AB⊥CD,∴MD=14×=7,∵AB=50,∴OD=25,在Rt△OBD中,OB===24.故选B.点评:本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键. 7.(4分)如图所示,二次函数y=ax2+bx+c(a≠0)的图象,且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:(1)b2﹣4ac>0;(2)abc<0;(3)a﹣b+c>0;(4)2a﹣b>0;(5)5a﹣b+2c>0.正确的个数有( ) A.1B.2C.3D.4考点:二次函数图
7、象与系数的关系.分析:根据函数图象可知判别式△>0;根据抛抛物线开口向下,与y轴的正半轴相交,对称轴在y轴左侧可得a、b、c的取值范围,从而得到abc的取值范围;观察图形得到x=﹣1时,二次函数y的值在x轴上方,可得a﹣b+c的取值范围;根据对称轴即可判断2a﹣b>0;由于当x=1时,y=a+b+c<0;当x=﹣2时,y=4a﹣2b+c<0;两式相减即可作出判断.解答:解:∵抛物线和x轴有2个交点,∴△>0,故(1)正确;∵抛抛物线开口向下,∴a<0,∵与y轴的正半轴相交,∴c>0,∵对称轴在y轴左侧,∴b<0,∴abc>0,故(2)不正确;当x=﹣
8、1时,y=a﹣b+c>0,即a﹣b+c>0,故(3)正确;∵对称轴﹣1<x=﹣<0,∴2a﹣b<0,故(4)
此文档下载收益归作者所有