欢迎来到天天文库
浏览记录
ID:59093566
大小:208.50 KB
页数:6页
时间:2020-09-14
《高二数学选修23考试试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高二数学选修2-3考试试卷(满分150分,时间120分钟)(第一卷)一、选择题(每小题5分,共50分)1.掷一枚硬币,记事件A="出现正面",B="出现反面",则有() A.A与B相互独立 B.P(AB)=P(A)P(B) C.A与B不相互独立王国 D.P(AB)=2.二项式的展开式的常数项为第()项A.17B。18C。19D。203.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是()A.B.C.D.4.从6名学生中,选出
2、4人分别从事A、B、C、D四项不同的工作,若其中,甲、乙两人不能从事工作A,则不同的选派方案共有()A.96种B.180种C.240种D.280种5.在某一试验中事件A出现的概率为,则在次试验中出现次的概率为()A.1-B.C.1-D.6.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.B.C.D.7.随机变量服从二项分布~,且则等于()A.B.C.1D.08.某考察团对全国10大城市进行职工人均平均工资与居民人均消费进行统计调查,与具有相关关系,回归方程(
3、单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为()A.66%B.72.3%C.67.3%D.83%9.设随机变量X~N(2,4),则D(X)的值等于()A.1B.2C.D.410.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是(C)A.若K2的观测值为k=6.635,我们有99%的把握认为“吸烟与患肺病有关系”,那么在100个吸烟的人中必有99人有肺病B.从独立性检验可知,有99%的把握认为“吸烟与患肺病有关系”时,我们说某人吸烟,那么他有99%的
4、可能患有肺病C.若从统计量中求出有95%的把握认为“吸烟与患肺病有关系”,是指有5%的可能性使得推判出现错误D.以上三种说法都不正确(第二卷)二、填空题(每小题5分,共20分)11.一直10件产品,其中3件次品,不放回抽取3次,已知第一次抽到是次品,则第三次抽次品的概率_________。12.如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行第2个数是_________.122343477451114115616252516613.A、B、C、D、E五人并排站成一排,若A
5、,B必须相邻,且B在A的左边,那么不同的排法共有种14.已知二项分布满足X~B(6,),则P(X=2)=_________,EX=_________.三,解答题(6题,共80分)15.(12)在一次篮球练习课中,规定每人最多投篮5次,若投中2次就称为“通过”,若投中3次就称为“优秀”并停止投篮.已知甲每次投篮投中的概率是2/3.求:设甲投篮投中的次数为,求随机变量的分布列及数学期望E.16.(12)下表是某地区的一种传染病与饮用水的调查表:得病不得病合计干净水52466518不干净水9421831
6、2合计146684830利用列联表的独立性检验,判断能否以99.9%的把握认为“该地区的传染病与饮用不干净的水有关”参考数据:0.250.150.100.050.0250.0100.0050.0011.3232.0722.7063.8415.0246.6357.87910.82817.(14)已知的展开式中,第5项的系数与第3项的系数之比是56:3,求展开式中的常数项。18.(14分)两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是,(Ⅰ)两人各射击一次,中靶至少一次就算完成目标,则完成目标
7、概率是多少?(Ⅱ)两人各射击2次,中靶至少3次就算完成目标,则完成目标的概率是多少?(Ⅲ)两人各射击5次,是否有99%的把握断定他们至少中靶一次?19.(14)一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?20.(14)已知:求证:高二数学选修2-3考试试卷答案(满分150分,时间120分钟)一、选择题答案(每小题5分,共50分)题号123456789
8、10答案CBDCDCBDAC二.(每小题5分,共20分)11.12.13.2414. ,4三,解答题(6题,共80分)15.(12分)解:分布列ξ0123PEξ=2.4716.(12分)解:由已知计算17.(15分)解:由通项公式,当r=2时,取到常数项即18.(15分)解:(Ⅰ)共三种情况:乙中靶甲不中;甲中靶乙不中;甲乙全。∴概率是。(Ⅱ)两类情况:共击中3次;共击中4次,.(III),能断定.19.(15分)解:(1)将取出4个球分成三类情况1)取4个红球,没有白球,有种2)
此文档下载收益归作者所有