欢迎来到天天文库
浏览记录
ID:59087944
大小:124.00 KB
页数:10页
时间:2020-09-14
《2011年各地中考数学压轴题精选.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年各地中考数学压轴题精选11-202011福建三明22.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)2011福建三明23.在矩形ABCD中,点P在AD上,AB=2,AP=1
2、.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;(5分)②直接写出从开始到停止,线段EF的中点经过的路线长.(4分)2011福建宁德25.(本题满分13分)定义:三边长和面积都是整数的三角形称为“整数三角形”.435数学学习小组的同学从32根等长的火柴棒(每根长度
3、记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.⑴请你画出小颖和小辉摆出的“整数三角形”的示意图;⑵你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.2011福建宁德26.(本题满分13分)直线与x轴、y轴分别交于点
4、A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.⑴①直线与坐标轴交点坐标是A(___,___),B(___,___);②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);⑵若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);yABEFOx-3-2-14321-1-2-3-4-5-6⑶设四边形DCEF落在第一象限内的图形面积为S,求
5、S关于t的函数表达式,并求出S的最大值.2011福建南平25、(2011•南平)(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.(2)类比探究:如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.2011福建南平26、(2011•南平)定义:对于抛物线y=ax2+bx+c(a、b、c是常数,a≠0),若b2=ac,则称该抛物线为黄金抛物线.例如:y=
6、2x2﹣2x+2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式;(2)若抛物线y=ax2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线沿对称轴向下平移3个单位①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出
7、新抛物线的示意图(画图不计分)]【提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)】.2011上海24.(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy(如图1),一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.图12011上海25.(本题满分14分
8、,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线
此文档下载收益归作者所有