用--------圆的参数方程ppt课件.ppt

用--------圆的参数方程ppt课件.ppt

ID:59028012

大小:471.50 KB

页数:33页

时间:2020-09-26

用--------圆的参数方程ppt课件.ppt_第1页
用--------圆的参数方程ppt课件.ppt_第2页
用--------圆的参数方程ppt课件.ppt_第3页
用--------圆的参数方程ppt课件.ppt_第4页
用--------圆的参数方程ppt课件.ppt_第5页
资源描述:

《用--------圆的参数方程ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第二讲参数方程1、参数方程的概念(1)在取定的坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,即并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程组就叫做这条曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数。参数方程的参数可以是有物理、几何意义的变数,也可以是没有明显意义的变数。(2)相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。(4)证明这个参数方程就是所由于的曲线的方程.参数方程求法:(1)建立直角坐标系,设曲线上任一点P坐标为;(2)选

2、取适当的参数;(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式;2、圆的参数方程sinθ=cosθ=tanθ=cotθ=y/rx/ry/xx/y1三角函数定义A(x,y)yxoθrsecθ=r/xcscθ=r/y一复习回顾①并且对于的每一个允许值,由方程组①所确定的点P(x,y),都在圆O上.5o思考1:圆心为原点,半径为r的圆的参数方程是什么呢?我们把方程组①叫做圆心在原点、半径为r的圆的参数方程,是参数.观察2(a,b)r又所以圆心为原点半径为r的圆的参数方程.其中参数θ的几何意义是OM0绕点O逆时针旋转到OM的位

3、置时,OM0转过的角度圆心为,半径为r的圆的参数方程一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围。例1、已知圆方程x2+y2+2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1)2+(y-3)2=1,∴参数方程为(θ为参数)练习:1.填空:已知圆O的参数方程是(0≤<2)⑴如果圆上点P所对应的参数,则点P的坐标是A的圆,化为标准方程为(2,-2)1xMPAyO解:设M的坐标为(x,y),∴可设点P坐标为(4cosθ,4sinθ)∴点M的轨迹是以(6,0)为圆心、2为

4、半径的圆。由中点公式得:点M的轨迹方程为x=6+2cosθy=2sinθx=4cosθy=4sinθ圆x2+y2=16的参数方程为例2.如图,已知点P是圆x2+y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆上运动时,线段PA中点M的轨迹是什么?例题:解:设M的坐标为(x,y),∴点M的轨迹是以(6,0)为圆心、2为半径的圆。由中点坐标公式得:点P的坐标为(2x-12,2y)∴(2x-12)2+(2y)2=16即M的轨迹方程为(x-6)2+y2=4∵点P在圆x2+y2=16上xMPAyO例2.如图,已知点P是圆x2+

5、y2=16上的一个动点,点A是x轴上的定点,坐标为(12,0).当点P在圆上运动时,线段PA中点M的轨迹是什么?例题:例3、已知点P(x,y)是圆x2+y2-6x-4y+12=0上动点,求(1)x2+y2的最值,(2)x+y的最值,(3)P到直线x+y-1=0的距离d的最值。解:圆x2+y2-6x-4y+12=0即(x-3)2+(y-2)2=1,用参数方程表示为由于点P在圆上,所以可设P(3+cosθ,2+sinθ),(1)x2+y2=(3+cosθ)2+(2+sinθ)2=14+4sinθ+6cosθ=14+2sin(θ+ψ).(其中tan

6、ψ=3/2)∴x2+y2的最大值为14+2,最小值为14-2。(2)x+y=3+cosθ+2+sinθ=5+sin(θ+)∴x+y的最大值为5+,最小值为5-。(3)显然当sin(θ+)=1时,d取最大值,最小值,分别为,。参数方程和普通方程的互化把它化为我们熟悉的普通方程,有cosθ=x-3,sinθ=y;于是(x-3)2+y2=1,轨迹是什么就很清楚了在例1中,由参数方程直接判断点M的轨迹是什么并不方便,一般地,可以通过消去参数而从参数方程得到普通方程;曲线的参数方程和普通方程是曲线方程的不同形式.在参数方程与普通方程的互化中,必须使x,

7、y的取值范围保持一致,否则,互化就是不等价的.把参数方程化为普通方程:例1、把下列参数方程化为普通方程,并说明它们各表示什么曲线?解:(1)由得代入得到这是以(1,1)为端点的一条射线;所以把得到(1)(2)(3)x=t+1/ty=t2+1/t2(1)(x-2)2+y2=9(2)y=1-2x2(-1≤x≤1)(3)x2-y=2(x≥2或x≤-2)练习、将下列参数方程化为普通方程:步骤:(1)消参;(2)求定义域。B例2求参数方程表示()(A)双曲线的一支,这支过点(1,1/2);(B)抛物线的一部分,这部分过(1,1/2);(C)双曲线的一支

8、,这支过点(–1,1/2);(D)抛物线的一部分,这部分过(–1,1/2).例3求椭圆的参数方程:(1)设为参数;(2)设为参数.为什么两个参数方程合起来才是椭圆的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。