选修1-2推理与证明 2.1.1合情推理 课件.ppt

选修1-2推理与证明 2.1.1合情推理 课件.ppt

ID:58997114

大小:1.42 MB

页数:36页

时间:2020-09-27

选修1-2推理与证明 2.1.1合情推理 课件.ppt_第1页
选修1-2推理与证明 2.1.1合情推理 课件.ppt_第2页
选修1-2推理与证明 2.1.1合情推理 课件.ppt_第3页
选修1-2推理与证明 2.1.1合情推理 课件.ppt_第4页
选修1-2推理与证明 2.1.1合情推理 课件.ppt_第5页
资源描述:

《选修1-2推理与证明 2.1.1合情推理 课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、已知的判断新的判断确定根据一个或几个已知的判断来确定一个新的判断的思维过程就叫推理.推理与证明推理证明直接证明间接证明言之有理,论证有据!演绎推理合情推理第二章推理与证明2.1.1合情推理(1)3+7=103+17=2013+17=3010=3+720=3+1730=13+176=3+3,8=3+5,10=5+5,……1000=29+971,1002=139+863,……猜想任何一个不小于6的偶数都等于两个奇质数的和.数学皇冠上璀璨的明珠——哥德巴赫猜想一个规律:偶数=奇质数+奇质数哥德巴赫猜想的过程:具体的材料观察分析猜想出一般性的结论归纳推理的过

2、程:由某类事物的具有某些特征,推出该类事物的都具有这些特征的推理,或者由概括出的推理,称为归纳推理(简称归纳).部分对象全部对象个别事实一般结论归纳推理1,3,5,7,…,由此你猜想出第个数是_______.这就是从部分到整体,从个别到一般的归纳推理.你想起来了吗?成语“一叶知秋”统计初步中的用样本估计总体通过从总体中抽取部分对象进行观测或试验,进而对整体做出推断.意思是从一片树叶的凋落,知道秋天将要来到.比喻由细微的迹象看出整体形势的变化,由部分推知全体.1.已知数列{}的第一项=1,且(=1,2,3,···),请归纳出这个数列的通项公式为____

3、____.让我们一起来归纳推理2.数一数图中的凸多面体的面数F、顶点数V和棱数E,然后探求面数F、顶点数V和棱数E之间的关系.四棱柱三棱锥八面体三棱柱四棱锥尖顶塔凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体凸多面体面

4、数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱558四棱锥凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔四棱柱6812644三棱锥1286八面体695三棱柱558四棱锥9169尖顶塔6959558169凸多面体面数(F)顶点数(V)棱数(E)四棱柱三棱锥八面体三棱柱四棱锥尖顶塔68126441286猜想凸多面体的面数F、顶点

5、数V和棱数E之间的关系式为:F+V-E=2欧拉公式归纳推理的基础归纳推理的作用归纳推理观察、分析发现新事实、获得新结论由部分到整体、个别到一般的推理注意归纳推理的结论不一定成立可能有生命存在有生命存在温度适合生物的生存一年中有四季的变更有大气层大部分时间的温度适合地球上某些已知生物的生存一年中有四季的变更有大气层行星、围绕太阳运行、绕轴自转行星、围绕太阳运行、绕轴自转火星地球火星上是否存在生命火星与地球类比的思维过程:火星地球存在类似特征地球上有生命存在猜测火星上也可能有生命存在由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也

6、具有这些特征的推理称为类比推理.类比推理我们已经学习过“等差数列”与“等比数列”.你是否想过“等和数列”、“等积数列”?从第二项起,每一项与其前一项的差等于一个常数的数列是等差数列.类推从第二项起,每一项与其前一项的和等于一个常数的数列是等和数列.试根据等式的性质猜想不等式的性质.类比推理的结论不一定成立.;(2);(3);等等.等式的性质:让我们一起来类比推理..探究圆的概念和性质球的类似概念和性质圆心与弦(非直径)中点连线垂直于弦.与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长.以点P(x0,y0)为圆心,r为半径的

7、圆的方程为(x-x0)2+(y-y0)2=r2.球心与截面圆(不经过球心的截面圆)圆心连线垂直于截面圆.与球心距离相等的两截面圆面积相等;与球心距离不等的两截面圆面积不等,距球心较近的截面圆面积较大.以点P(x0,y0,z0)为球心,r为半径的球的方程为(x-x0)2+(y-y0)2+(z-z0)2=r2.类比推理类比推理以旧的知识为基础,推测新的结果,具有发现的功能由特殊到特殊的推理类比推理的结论不一定成立注意类比推理由特殊到特殊的推理;以旧的知识为基础,推测新的结果;结论不一定成立.归纳推理由部分到整体、特殊到一般的推理;以观察分析为基础,推测新

8、的结论;具有发现的功能;结论不一定成立.具有发现的功能;小结☞归纳推理和类比推理的过程从具体问题出发观察、分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。