5、先试着画出二次函数y=x2的图象。让学生板书:出现的问题让学生去找出,纠正;教师用“z+z”加以验证,并帮助学生给二次函数图象命名,“二次函数的图象称为抛物线。”学生们过去已熟知了画函数图象的方法:①列表、②描点、③连线。因此在这一问题上教师不作过多提示,完全把这跳一跳,摸得着的问题完全交给学生。活动2:议一议请同学们观察y=x2的图象的性质,然后分组探讨。请每组的学生代表一一发表自己的观察结果,(在此过程中,教师不能作裁判,把评判权交给学生,注意培养学生语言的规范化、条理化。)然后按课本的问题加以总结和整理。(作到有放有收)得出:① 图象形状:抛物线(由教师给出) ② 与x、y轴交点
6、;在此问题上,教师没有按课本上的问题一一叠列给学生,而是尽量充分发挥学生的观察能力;再者学生已研究过正比例函数、一次函数、反比例函数,已经积累了一定的研究函数图象的方法和能力,积累了研究函数图象要“研究什么”的经验,有了一定“模式” ③ y随x的增减性; ④ 图象的对称性。及系数与图象的关系。活动3:做一做教师问:二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象,它与二次函数y=x2的图象有了什么变化?教师提出问题,学生小组讨论,对比,得出结论。完成二次函数y=ax2中系数a的变化,引出图象一些性质的变化。设计说明:主要以小组讨论完成,其间可找一小组用“z+z”将y=x