欢迎来到天天文库
浏览记录
ID:5898007
大小:3.53 MB
页数:58页
时间:2017-12-27
《初升高暑假数学衔接补课讲义》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。而高中则是贯穿整个数学教材的始终
2、的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专
3、题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。高中则在使用。另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。新的课程改革,难免会导致很多知识的脱节和漏洞。本书当然也没有详尽列举出来。我们会不断的研究新课程及其体系。将不遗余力地找
4、到新的初高中数学教材体系中存在的不足,加以补充和完善。第一章数与式1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式第二章二次方程与二次不等式2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆583.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3
5、.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幂定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.例1解不等式:>4.解法一:由,得;由,得;①若,
6、不等式可变为,即>4,解得x<0,又x<1,∴x<0;②若,不等式可变为,即1>4,∴不存在满足条件的x;③若,不等式可变为,即>4,解得x>4.又x≥3,∴x>4.综上所述,原不等式的解为x<0,或x>4.13ABx04CDxP
7、x-1
8、
9、x-3
10、图1.1-1解法二:如图1.1-1,表示x轴上坐标为x的点P到坐标为1的点A之间的距离
11、PA
12、,即
13、PA
14、=
15、x-1
16、;
17、x-3
18、表示x轴上点P到坐标为2的点B之间的距离
19、PB
20、,即
21、PB
22、=
23、x-3
24、.所以,不等式>4的几何意义即为
25、PA
26、+
27、PB
28、>4.由
29、AB
30、=2,可知
31、点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.58x<0,或x>4.练习1.填空:(1)若,则x=_________;若,则x=_________.(2)如果,且,则b=________;若,则c=________.2.选择题:下列叙述正确的是()(A)若,则(B)若,则(C)若,则(D)若,则3.化简:
32、x-5
33、-
34、2x-13
35、(x>5).1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式;(2)完全平方公式.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式;(2)立方差
36、公式;(3)三数和平方公式;(4)两数和立方公式;(5)两数差立方公式.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:.解法一:原式===.解法二:原式===.例2已知,,求的值.解:.练习1.填空:(1)();(2);(3) .2.选择题:(1)若是一个完全平方式,则等于()(A)(B)
此文档下载收益归作者所有