资源描述:
《定积分的应用 ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章利用元素法解决:定积分在几何上的应用定积分的应用第一节机动目录上页下页返回结束定积分的元素法一、什么问题可以用定积分解决?二、如何应用定积分解决问题?第六章表示为一、什么问题可以用定积分解决?1)所求量U是与区间[a,b]上的某分布f(x)有关的2)U对区间[a,b]具有可加性,即可通过“大化小,常代变,近似和,取极限”定积分定义机动目录上页下页返回结束一个整体量;二、如何应用定积分解决问题?第一步利用“化整为零,以常代变”求出局部量的微分表达式第二步利用“积零为整,无限累加”求出整体量的积分表达式这种分析方法成为元素法(或微元分析法)元素的几何形状常
2、取为:条,带,段,环,扇,片,壳等近似值精确值第二节目录上页下页返回结束四、旋转体的侧面积(补充)三、已知平行截面面积函数的立体体积第二节一、平面图形的面积二、平面曲线的弧长机动目录上页下页返回结束定积分在几何学上的应用第六章一、平面图形的面积1.直角坐标情形设曲线与直线及x轴所围曲则机动目录上页下页返回结束边梯形面积为A,右下图所示图形面积为例1.计算两条抛物线在第一象限所围所围图形的面积.解:由得交点机动目录上页下页返回结束例2.计算抛物线与直线的面积.解:由得交点所围图形为简便计算,选取y作积分变量,则有机动目录上页下页返回结束例3.求椭圆解:利用对称
3、性,所围图形的面积.有利用椭圆的参数方程应用定积分换元法得当a=b时得圆面积公式机动目录上页下页返回结束一般地,当曲边梯形的曲边由参数方程给出时,按顺时针方向规定起点和终点的参数值则曲边梯形面积机动目录上页下页返回结束例4.求由摆线的一拱与x轴所围平面图形的面积.解:机动目录上页下页返回结束2.极坐标情形求由曲线及围成的曲边扇形的面积.在区间上任取小区间则对应该小区间上曲边扇形面积的近似值为所求曲边扇形的面积为机动目录上页下页返回结束对应从0变例5.计算阿基米德螺线解:点击图片任意处播放开始或暂停机动目录上页下页返回结束到2所围图形面积.例6.计算心形线
4、所围图形的面积.解:(利用对称性)心形线目录上页下页返回结束心形线(外摆线的一种)即点击图中任意点动画开始或暂停尖点:面积:弧长:参数的几何意义例7.计算心形线与圆所围图形的面积.解:利用对称性,所求面积机动目录上页下页返回结束二、已知平行截面面积函数的立体体积设所给立体垂直于x轴的截面面积为A(x),则对应于小区间的体积元素为因此所求立体体积为机动目录上页下页返回结束上连续,特别,当考虑连续曲线段轴旋转一周围成的立体体积时,有当考虑连续曲线段绕y轴旋转一周围成的立体体积时,有机动目录上页下页返回结束例13.计算由椭圆所围图形绕x轴旋转而转而成的椭球体的体积
5、.解:方法1利用直角坐标方程则(利用对称性)机动目录上页下页返回结束方法2利用椭圆参数方程则特别当b=a时,就得半径为a的球体的体积机动目录上页下页返回结束例16.一平面经过半径为R的圆柱体的底圆中心,并与底面交成角,解:如图所示取坐标系,则圆的方程为垂直于x轴的截面是直角三角形,其面积为利用对称性计算该平面截圆柱体所得立体的体积.机动目录上页下页返回结束思考:可否选择y作积分变量?此时截面面积函数是什么?如何用定积分表示体积?提示:机动目录上页下页返回结束垂直x轴的截面是椭圆例17.计算由曲面所围立体(椭球体)解:它的面积为因此椭球体体积为特别当a=b=
6、c时就是球体体积.机动目录上页下页返回结束的体积.例18.求曲线与x轴围成的封闭图形绕直线y=3旋转得的旋转体体积.(94考研)解:利用对称性,故旋转体体积为在第一象限机动目录上页下页返回结束三、平面曲线的弧长定义:若在弧AB上任意作内接折线,当折线段的最大边长→0时,折线的长度趋向于一个确定的极限,此极限为曲线弧AB的弧长,即并称此曲线弧为可求长的.定理:任意光滑曲线弧都是可求长的.(证明略)机动目录上页下页返回结束则称(1)曲线弧由直角坐标方程给出:弧长元素(弧微分):因此所求弧长(P168)机动目录上页下页返回结束(2)曲线弧由参数方程给出:弧长元素
7、(弧微分):因此所求弧长机动目录上页下页返回结束(3)曲线弧由极坐标方程给出:因此所求弧长则得弧长元素(弧微分):(自己验证)机动目录上页下页返回结束例10.求连续曲线段解:的弧长.机动目录上页下页返回结束例11.计算摆线一拱的弧长.解:机动目录上页下页返回结束例12.求阿基米德螺线相应于0≤≤2一段的弧长.解:(P349公式39)小结目录上页下页返回结束思考与练习1.用定积分表示图中阴影部分的面积A及边界长s.提示:交点为弧线段部分直线段部分机动目录上页下页返回结束以x为积分变量,则要分两段积分,故以y为积分变量.习题课1.定积分的应用几何方面:面积、
8、体积、弧长、表面积.物理方面:质量、作功、侧压力、引