欢迎来到天天文库
浏览记录
ID:58871485
大小:168.00 KB
页数:13页
时间:2020-10-26
《2017广东中考复习-圆综合.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、题型五 圆的综合题针对演练1.如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=,延长OE到点F,使EF=2OE.(1)求证:∠BOE=∠ACB;(2)求⊙O的半径;(3)求证:BF是⊙O的切线.2.如图,AB为⊙O的直径,点C为圆外一点,连接AC、BC,分别与⊙O相交于点D、点E,且,过点D作DF⊥BC于点F,连接BD、DE、AE.(1)求证:DF是⊙O的切线;(2)试判断△DEC的形状,并说明理由;(3)若⊙O的半径为5,AC=
2、12,求sin∠EAB的值.3.(2016长沙9分)如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.4.(2016德州10分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE
3、=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.5.(2015永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.6.(2015省卷24,9分)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,PB.(1)如图①,若D是线段OP的中点,求∠BAC的度数;(2)如图②,在DG上取一
4、点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图③,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.7.(2017原创)如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD于点F,连接BE交CD于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC·GA;(3)在(2)的条件下,若tanD=,EG=,求⊙O的半径.8.(2015达州)在△ABC的外接圆⊙O中,△ABC的外角平分线CD交⊙O于点D,F为上一点,
5、且,连接DF,并延长DF交BA的延长线于点E.(1)判断DB与DA的数量关系,并说明理由;(2)求证:△BCD≌△AFD;(3)若∠ACM=120°,⊙O的半径为5,DC=6,求DE的长.9.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为点D.(1)求证:△ACD∽△ABC;(2)求证:∠PCA=∠ABC;(3)过点A作AE∥PC交⊙O于点E,交CG于点F,连接BE,若sinP=,CF=5,求BE的长.10.(2016大庆9分)如图,在Rt△ABC中
6、,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线;(2)若MH=,tan∠ABC=,求⊙O的半径;(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.11.如图,△ABC为⊙O的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判断直线PA与⊙O的位置关系,并说明理由;
7、(2)求证:AG2=AF·AB;(3)若⊙O的直径为10,AC=2,AB=4,求△AFG的面积.12.(2016鄂州10分)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值;(3)在(2)的条件下,设⊙O的半径为3,求AB的长.答案?想得倒挺美Answer?Youarebeautiful.
此文档下载收益归作者所有