幂函数教材分析.doc

幂函数教材分析.doc

ID:58857575

大小:85.50 KB

页数:3页

时间:2020-09-23

幂函数教材分析.doc_第1页
幂函数教材分析.doc_第2页
幂函数教材分析.doc_第3页
资源描述:

《幂函数教材分析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、幂函数教学目标:使学生认识到幂函数同样也是一种重要的函数模型,掌握从特殊到一般地去进行类比研究幂函数的性质,并注意与指数函数进行对比学习.教学重点:幂函数的定义和图象.教学难点:幂函数的图象.教学过程:Ⅰ.复习引入幂函数的定义Ⅱ.讲授新课问题1:我们知道,分数指数幂可以与根式相互转化.把下列各函数先化成根式形式,再指出它的定义域和奇偶性.利用计算机画出它们的图象,观察它们的图象,看有什么共同点?  (1)y=;(2)y=;(3)y=;(4)y=.  思路:先将各式化为根式形式,函数的定义域就是使这些根式有意义的实数x的集合;奇偶性

2、直接利用定义进行判断.(1)定义域为[0,+),(2)(3)(4)定义域都是R;其中(1)既不是奇函数也不是偶函数,(2)是奇函数,(3)(4)是偶函数.它们的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增.  问题2:仿照问题1研究下列函数的定义域和奇偶性,观察它们的图象看有什么共同点?  (1)y=x-1;(2)y=x-2;(3)y=;(4)y=.  思路:先将负指数幂化为正指数幂,再将分数指数幂化为根式,函数的定义域就是使这些分式和根式有意义的实数x的集合;(1)(2)(4)的定义域都是{x

3、x≠0},(3)

4、的定义域是(0,+);(1)(4)是奇函数,(2)是偶函数,(3)既不是奇函数也不是偶函数.它们的图象都经过点(1,1),且在第一象限内函数单调递减,并且以两坐标轴为渐近线.总结:研究幂函数时,通常先将负指数幂化为正指数幂,再将分数指数幂化为根式(幂指数是负整数时化为分式);根据得到的分式或根式研究幂函数的性质.函数的定义域就是使这些分式和根式有意义的实数x的集合;奇偶性和单调性直接利用定义进行判断.问题1和问题2中的这些幂函数我们要记住它们图象的变化趋势,有利于我们进行类比.[例1]讨论函数y=的定义域、值域、奇偶性、单调性,并

5、画出图象的示意图.  思路:函数y=是幂函数.  (1)要使y==有意义,x可以取任意实数,故函数定义域为R.  (2)∵xR,∴x2≥0.∴y≥0.  (3)f(-x)===f(x),  ∴函数y=是偶函数;(4)∵n=>0,  ∴幂函数y=在[0,+]上单调递增.  由于幂函数y=是偶函数,  ∴幂函数y=在(-∞,0)上单调递减.  (5)其图象如右图所示.[例2]比较下列各组中两个数的大小:  (1)1.5,1.7;(2)0.71.5,0.61.5;(3)(-1.2),(-1.25).  解析:(1)考查幂函数y=的单调性

6、,在第一象限内函数单调递增,  ∵1.5<1.7∴1.5<1.7  (2)考查幂函数y=的单调性,同理0.71.5>0.61.5.  (3)先将负指数幂化为正指数幂可知它是偶函数,  ∵(-1.2)=1.2,(-1.25)=1.25,又1.2>1.25  ∴(-1.2)>(-1.25)  点评:比较幂形式的两个数的大小,一般的思路是:  (1)若能化为同指数,则用幂函数的单调性;  (2)若能化为同底数,则用指数函数的单调性;  (3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.  [例3]求函数

7、y=+2x+4(x≥-32)值域.  解析:设t=x,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.  当t=-1时,ymin=3.  ∴函数y=+2x+4(x≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.Ⅲ.课堂练习课本P731,2Ⅳ.课时小结[师]通过本节学习,大家能熟悉并掌握幂函数的图象,提高数学应用的能力.Ⅴ.课后作业课本P73习题1,2,3,4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。