欢迎来到天天文库
浏览记录
ID:58822269
大小:258.00 KB
页数:25页
时间:2020-09-25
《高一数学集合部分教学专项教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学集合部分教学专项训练教学目标 (1)初步理解集合的概念,掌握其记法及表示方法,掌握常用数集的符号,了解空集概念并掌握其符号; (2)了解集合中元素的概念,初步了解“属于”关系的意义; (3)理解集合中元素的确定性、互异性,了解集合中元素的无序性; (4)初步了解有限集、无限集、空集的意义; (5)会用集合、元素等知识表示简单集合的有关问题; (6)渗透数学是来源实践反过来又指导实践的辨证唯物主义观点.教学建议一、知识结构 本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合
2、的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.二、重点难点分析 这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法.1.关于牵头图和引言分析 章头图是一组跳伞队员编成的图案,引言给出了一
3、个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明集合和简易逻辑知识是高中数学重要的基础.2.关于集合的概念分析 点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念. 初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地
4、,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明. 我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.3.关于自然数集的分析 教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意. 新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有
5、了0,减法运算仍属于自然数,其中.因此要注意几下几点: (1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0; (2)自然数集内排除0的集,表示成或,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示,,; (3)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用. 4.关于集合中的元素的三个特性分析 集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。 集合中的元素常用小写的拉丁字母,…表
6、示.如果a是集合A的元素,就说a属于集合A,记作;否则,就说a不属于A,记作 要正确认识集合中元素的特性: (l)确定性:和,二者必居其一. 集合中的元素必须是确定的.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{地球上的四大洋},它的元素是:太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个集合.如果说“由接近的数组成的集合”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成集合. (2)互异性:若,,则 集合中的元素是互异的.这就是
7、说,集合中的元素是不能重复的,集合中相同的元素只能算是一个.例如方程有两个重根,其解集只能记为{1},而不能记为{1,1}. (3)无序性:{a,b}和{b,a}表示同一个集合. 集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合. 5.要辩证理解集合和元素这两个概念 (1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如的写法就是错
8、误的,而的写法就是正确的. (2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合,就是指所有不小于0的实数,而不是指“可以在不小于0的实数范围内取值”,不是指“是不小于0的一个实数或某些实数,”也不是指“是不小于0的任一实数值”…… (3)集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件. 6.表示集合的方法所依据的国家标准 本小节列举法与描述法所
此文档下载收益归作者所有