整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc

整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc

ID:58804302

大小:184.50 KB

页数:7页

时间:2020-09-27

整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc_第1页
整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc_第2页
整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc_第3页
整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc_第4页
整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc_第5页
资源描述:

《整式的乘除与因式分解 全章复习与巩固(提高)知识讲解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、整式的乘除与因式分解全章复习与巩固(提高)【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(≠0,为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单

2、项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4.单

3、项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数

4、的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、已知,求的值.【思路点拨】由于已知的值,所

5、以逆用幂的乘方把变为,再代入计算.【答案与解析】解:∵,∴.【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【变式】(1)已知,比较的大小.(2)比较大小。【答案】解:(1);(2)提示:(1)转化为同指数不同底数的情况进行比较,指数转化为12;(2)转化成比较同底数不同指数,底数转化为3.类型二、整式的乘除法运算2、已知代数式(mx2+2mx﹣1)(xm+3nx+2)化简以后是一个四次多项式,并且不含二次项,请分别求出m,n的值,并求出一次项系数.【思路点拨】先把代数式按照多项式乘以多项式展开,因为化简后是一个四次多项式,所以x

6、的最高指数m+2=4;不含二次项,即二次项的系数为0,即可解答.【答案与解析】解:(mx2+2mx﹣1)(xm+3nx+2)=mxm+2+3mnx3+2mx2+2mxm+1+6mnx2+4mx﹣xm﹣3nx﹣2,因为该多项式是四次多项式,所以m+2=4,解得:m=2,原式=2x4+(6n+4)x3+(3+12n)x2+(8﹣3n)x﹣2∵多项式不含二次项,∴3+12n=0,解得:n=,所以一次项系数8﹣3n=8+=.【总结升华】本题考查了多项式乘以多项式,解决本题的关键是明确化简后是一个四次多项式,所以x的最高指数m+2=4;不含二次项,即二次

7、项的系数为0,即可解答.举一反三:【变式】若的乘积中不含的一次项,则等于______.【答案】;类型三、乘法公式3、计算:(1);(2).【思路点拨】(1)中可以将两因式变成与的和差.(2)中可将两因式变成与的和差.【答案与解析】解:(1)原式.(2)原式.【总结升华】(1)在乘法计算中,经常同时应用平方差公式和完全平方公式.(2)当两个因式中的项非常接近时,有时通过拆项用平方差公式会达到意想不到的效果.举一反三:【变式】计算:.【答案】解:.4、已知,求代数式的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出.【答案与解

8、析】解:所以所以.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.举一反三:【变式1】如果,则的值为.【

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。