欢迎来到天天文库
浏览记录
ID:58784479
大小:184.15 KB
页数:4页
时间:2020-09-29
《高考数学二轮总复习冲刺大题专攻练7立体几何A组理新人教A版.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯高考大题专攻练7.立体几何(A组)大题集训练,练就慧眼和规范,占领高考制胜点!1.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC.(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.【解题导引】(1)若证明平面ACD⊥平面ABC可根据面面垂直的判定在平面ACD内找一条线垂直平面ABC
2、,从而转化为线面垂直,再利用线线垂直确定线面垂直.(2)利用(1)中的垂直关系建立空间直角坐标系,求平面ADE和平面ACE的法向量,求法向量的余弦值得二面角的余弦值.【解析】(1)如图,取AC中点O,连接OD,OB.由∠ABD=∠CBD,AB=BC=BD知△ABD≌△CBD,所以CD=AD.由已知可得△ADC为等腰直角三角形,D为直角顶点,则OD⊥AC,设正△ABC边长为a,222则OD=AC=a,OB=a,BD=a,所以OD+OB=BD,即OD⊥OB.又OB∩AC=O,所以OD⊥平面ABC,又OD?平面ACD,所以平面
3、ACD⊥平面ABC.(2)如图,以OA,OB,OD所在直线分别为x轴,y轴,z轴建立空间直角坐标系,当E为BD中点时,平面AEC把四面体ABCD分成体积相等的两部分,故可得1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯A,D,C,E,则=,=.设平面ADE的一个法向量为n1=,则即令z1=1,则x1=1,y1=,所以n1=.同理可得平面AEC的一个法向量n2=,所以cos===.因为二面角D-AE-C的平面角为锐角,所以二面角D-AE-C的余弦值为.2⋯⋯
4、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2.如图,正方形ADEF与梯形ABCD所在平面互相垂直,已知AB∥CD,AD⊥CD,AB=AD=CD.(1)求证:BF∥平面CDE.(2)求平面BDF与平面CDE所成锐二面角的余弦值.【解析】(1)因为AF∥DE,AF?平面CDE,DE?平面CDE,所以AF∥平面CDE,同理,AB∥平面CDE,又AF∩AB=A,所以平面ABF∥平面CDE,又BF?平面ABF,所以BF∥平面CDE.(2)因为正方形ADEF与梯形ABCD所在平面互相
5、垂直,正方形ADEF与梯形ABCD交于AD,CD⊥AD,所以CD⊥平面ADEF,因为DE?平面ADEF,所以CD⊥ED,因为ADEF为正方形,所以AD⊥DE,因为AD⊥CD,所以以D为原点,DA,DC,DE所在直线分别为x,y,z轴,建立空间直角坐标系,则设AD=1,则D(0,0,0),B(1,1,0),F(1,0,1),A(1,0,0),=(1,1,0),=(1,0,1),取平面CDE的一个法向量=(1,0,0),3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯名校名师推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯设平面B
6、DF的一个法向量为n=(x,y,z),则即取n=(1,-1,-1),cos<,n>=,所以平面BDF与平面CDE所成锐二面角的余弦值为.4
此文档下载收益归作者所有