资源描述:
《高考数学二轮总复习冲刺第1部分专题四数列1_4_2数列求和及综合应用限时规范训练文.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、,,,,,,,,,,,,,,,,,,,,,,,名校名师推荐,,,,,,,,,,,,,,,,,,,限时规范训练数列求和及综合应用限时45分钟,实际用时________分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)*21.数列{an}中,a1=1,对所有n∈N都有a1·a2·,·an=n,则a3+a5=()6125A.B.1692531C.D.161522解析:选A.当n≥1时,a1·a2·a3·,·an=n;当n≥2时,a1·a2·a3·,·an-1=(n-1).n292561两式相除,得an=.∴a3=,a5=,∴a3+a5=,故选
2、A.n-141616*2.已知Sn表示数列{an}的前n项和,若对任意n∈N满足an+1=an+a2,且a3=2,则S2019=()A.1008×2020B.1008×2019C.1009×2019D.1009×2020解析:选C.在an+1=an+a2中,令n=1,得a2=a1+a2,a1=0;令n=2,得a3=2=2a2,a22019×2018=1,于是an+1-an=1,故数列{an}是首项为0,公差为1的等差数列,S2019==12009×2019.315533.已知数列{an}是等差数列,其前n项和为Sn,若a1a2a3=15,且++=,则a2S1S3S3S5
3、S5S15等于()1A.2B.21C.3D.3解析:选C.∵S1=a1,S3=3a2,S5=5a3,3111∴=++,5a1a2a2a3a1a3∵a1a2a3=15.3a3a1a2a2∴=++=,即a2=3.5151515514.数列{an}的通项公式是an=,若前n项和为10,则项数n为()n+n+1A.120B.99C.11D.121-1-,,,,,,,,,,,,,,,,,,,,,,,名校名师推荐,,,,,,,,,,,,,,,,,,,1解析:选A.an=n+n+1n+1-n=n+1+nn+1-n=n+1-n,所以a1+a2+,+an=(2-1)+(3-2)+,+(n
4、+1-n)=n+1-1=10.即n+1=11,所以n+1=121,n=120.11115.2+2+2+,+2的值为()2-13-14-1n+1-1n+13n+1A.B.-2n+242n+23111311C.-+D.-+42n+1n+22n+1n+2111解析:选C.∵2=2=n+1-1n+2nnn+2111=-.2nn+211111∴2+2+2+,+2=2-13-14-1n+1-1211111111-+-+-+,+-32435nn+213113111=--=-+.22n+1n+242n+1n+2n6.定义为n个正数p1,p2,,,pn的“均倒数”.若已知正项数列{an}
5、的前np1+p2+,+pn1an+1111项的“均倒数”为,又bn=,则++,+=()2n+14b1b2b2b3b10b1111A.B.11121011C.D.1112n1解析:选C.设数列{an}的前n项和为Sn,由=得Sn=n(2n+1),∴当n≥2a1+a2+,+an2n+1时,an=Sn-Sn-1=4n-1,4n-1+1111111111∴bn==n,则++,+=++,+=1-+-4b1b2b2b3b10b111×22×310×1122311110+,+-=1-=.故选C.10111111-2-,,,,,,,,,,,,,,,,,,,,,,,名校名师推荐,,,,,
6、,,,,,,,,,,,,,,二、填空题(本题共3小题,每小题5分,共15分)n7.在数列{an}中,已知a1=1,an+1+(-1)an=cos(n+1)π,记Sn为数列{an}的前n项和,则S2019=________.nn+1*解析:∵an+1+(-1)an=cos(n+1)π=(-1),∴当n=2k时,a2k+1+a2k=-1,k∈N,∴S2019=a1+(a2+a3)+,+(a2018+a2019)=1+(-1)×1009=-1008.答案:-1008218.若数列{an}的前n项和Sn=an+,则{an}的通项公式an=________.332121解析:当n
7、=1时,由已知Sn=an+,得a1=a1+,即a1=1;当n≥2时,由已知得到Sn333321212122-1=an-1+,所以an=Sn-Sn-1=an+-an-1+=an-an-1,所以an=-2an-1,所以数列33333333n-1{an}为以1为首项,-2为公比的等比数列,所以an=(-2).n-1答案:(-2)1119.在等比数列{an}中,0<a1<a4=1,则能使不等式a1-+a2-+,+an-≤0成a1a2an立的最大正整数n是________.3111解析:设等比数列的公比为q,由已知得a1q=1,且q>1,a1-+a