欢迎来到天天文库
浏览记录
ID:58766879
大小:663.50 KB
页数:43页
时间:2020-09-30
《城区公路选址问题论文设计写作.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.城区公路选址问题摘要城区公路选址是一项利民工程,为将该工程做得更好,建设部门在设计时应最大限度减少造价,从而节约成本,达到经费最省。为此目的,本文利用函数化思想建立模型求解并给出了五种不同要求下的最优方案。由题目所给数据(图1)可知,直线AB右上方单位区域中的单位建设费用小于AB左下的单位建设费用,且数据矩阵关于其次对角线对称。因而转弯点(无论一个或两个)均应位于AB右上区域。问题1要求至多1个转弯点且在网格点上,可分0个和1个转弯点两种情况。对于0个转弯点,即直线AB,通过几何方法得出建设费用为14.9907百万元。对于1个转弯点在网
2、格点上的问题,我们利用函数化思想建立函数关系模型,运用枚举法和权重法,并利用编程直接输出最小费用。比较可知,恰有一个转弯点时较无转弯点为优。其方案是选择坐标为(5,6)或(6,5)的点,建设费用最小为14.707百万元。对于问题2,我们在问题1解法的基础上,恰当修改程序,使之适用于两个转弯点的选择,得出最优转弯点为(4,7)和(7,4)时,建设费用最小,为14.6241百万元。与问题1的结果比较可知,选择两个转弯点较一个转弯点更优。对于问题3,要求转弯点在网格线上,即至少有一个坐标为整数,分一个转弯点和两个转弯点两种情况。因为整数最优点是
3、最接近理想最优点的整数点,我们可以在问题2解法的基础上,将循环语句中的步长1修改为0.01,运行结果说明,一个转弯点的最优选择是(6,4.57),费用为14.6989百万元;两个转弯点的最优选择是(3.62,7)和(7,3.62),费用为14.6201百万元。因而选择两个转弯点更优。Word文档.对于问题4,坐标点可以为区间[0,9]中的任意实数值,我们在问题三解法的基础上对最优点的两个坐标均用步长0.01循环,得出最优转弯点为(3.58,7.32)和(7.32,3.58),此时最小费用为14.54百万元。可见较问题3的答案更优。对于问题
4、5,每个点的单位建设费用都不同,且单位建设费用是连续函数。我们用曲线积分方法建立总费用模型,求出变下限积分函数的最小值,得出最优点为(5.31,5.31),最优建设费用为14.707百万元,与问题1相同。最后,我们针对问题的实际情况,对论文的优缺点做了评价,提出了几个改进方向,以便用于指导实际应用。关键词:函数化建模编程枚举法最优方案曲线积分法一、Word文档.问题重述某区政府计划在下列区域(见图1)修建一条从A(0,9)到B(9,0)的直线型公路,由于涉及路面拆迁等因素,各地段建设费用有所不同,图1中的数字代表该区域公路单位建设费用(单
5、位:百万元)。未标数字的任何地方单位建设费用均为1。图1的每个网格长与宽都是1个单位。每个网格的边界上建设费用按该地区最小单位费用计算。请你按建设部门的如下具体要求,从建设费用最省的角度,给出最优的方案。(1)公路至多只能有1个转弯点,且转弯点只能建在图1所示的网格点上。(2)公路至多可以有2个转弯点,且转弯点只能建在图1所示的网格点上。(3)公路至多只能有2个转弯点,且转弯点只能建在图1所示的网格线上。(4)公路至多只能有2个转弯点,转弯点可以建在图1所示区域的任何位置。(5)如果各区域的单位建设费用为(百万元),公路至多只能有1个转弯
6、点,转弯点可以建在图1所示区域的任何位置。Word文档.图1一、问题分析针对问题一:需要求出当公路至多只能有1个转弯点且转弯点只能建在图1所示的网格点上时所需的费用最省的目标值。首先,我们计算出没有转弯点时花费为14.9907百万元。对于有一个转弯点的,我们利用函数化建模思想将W与、的关系用数学方程式表达出来,接着利用编程将函数关系式进行运算,使用枚举法得出所有可能的转弯点的值,最后通过查找语句找出所得数据中的最小值,在与没有转弯点的花费比较,较小的即为可用的最优方案。针对问题二:需要求出当公路至多可以有2个转弯点且转弯点只能建在图1所示
7、的网格点上时所需的费用最省的目标值。在问题1的基础上,依旧利用函数化建模思想,经过分析,将程序中的一个变量增加为两个,通过枚举法,即可得出使得W最小的两个坐标值。针对问题三:需要求出当公路至多只能有2个转弯点且转弯点只能建在图1所示的网格线上时所需的费用最省的目标值,坐标点至少有一个为小数,在问题二的基础上设定x或y其一必为小数,即步长改为0.01,思想同二。针对问题四:需要求出当公路至多只能有2个转弯点但转弯点可以建在图1所示区域的任何位置时所需的费用最省的目标值。此时,坐标点为0-9之间的任意实数,有两种情况:一种为有一个转弯点,另一
8、种为有两个转弯点。在问题一、二的基础上,针对第一种情况,只需将第一问的程序中的步长改为0.01;针对第二种情况,只需将第二问程序中的步长改为0.01,通过比较两种情况下的值,可得出最优方案。W
此文档下载收益归作者所有