欢迎来到天天文库
浏览记录
ID:58691095
大小:424.00 KB
页数:7页
时间:2020-10-08
《直线地倾斜角与斜率.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课题直线的倾斜角与斜率教学目标掌握倾斜角和斜率的概念,掌握倾斜角和斜率的关系。教学容一、目标认知1.了解直线倾斜角的概念,掌握直线倾斜角的围;2.理解直线斜率的概念,理解各倾斜角是时的直线没有斜率;3.已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);4.掌握经过两点和的直线的斜率公式:();5.熟练掌握两条直线平行与垂直的充要条件.二、知识要点梳理知识点一:直线的倾斜角平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,则叫做直线的倾斜角.规定:当直
2、线和轴平行或重合时,直线倾斜角为,所以,倾斜角的围是.要点诠释:1.要清楚定义中含有的三个条件①直线向上方向;②轴正向;③小于的角.2.从运动变化观点来看,直线的倾斜角是由轴按逆时针方向旋转到与直线重合时所成的角.3.倾斜角的围是.当时,直线与轴平行或与轴重合.4.直线的倾斜角描述了直线的倾斜程度,每一条直线都有惟一的倾斜角和它对应.5.已知直线的倾斜角不能确定直线的位置,但是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.知识点二:直线的斜率倾斜角不是的直线,它的倾斜角的正切叫做这条直线的斜率,常用表示
3、,即.要点诠释:1.当直线与x轴平行或重合时,=0°,k=tan0°=0;2.直线与x轴垂直时,=90°,k不存在.由此可知,一条直线的倾斜角一定存在,但是斜率k不一定存在.知识点三:斜率公式已知点、,且与轴不垂直,过两点、的直线的斜率公式.要点诠释:1.对于上面的斜率公式要注意下面五点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角=90°,直线与x轴垂直;(2)k与P1、P2的顺序无关,即y1,y2和x1,x2在公式中的前后次序可以同时交换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而
4、直接由直线上两点的坐标求得;(4)当y1=y2时,斜率k=0,直线的倾斜角=0°,直线与x轴平行或重合;(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.2.斜率公式的用途:由公式可解决下列类型的问题:(1)由、点的坐标求的值;(2)已知及中的三个量可求第四个量;(3)已知及、的横坐标(或纵坐标)可求;(4)证明三点共线.知识点四:两直线平行设两条不重合的直线的斜率分别为.若,则与的倾斜角与相等.由,可得,即.因此,若,则.反之,若,则.要点诠释:1.公式成立的前提条件是①两条直线的斜率存在分别为;②不重
5、合;2.当两条直线的斜率都不存在且不重合时,的倾斜角都是,则.知识点五:两直线垂直设两条直线的斜率分别为.若,则.例1.如图,直线的倾斜角,直线,求、的斜率。解:的斜率,∵的倾斜角,∴的斜率.例2.(1)已知直线的倾斜角的变化围为,求该直线斜率的变化围;(2)已知直线的斜率,求该直线的倾斜角的围.解:(1)∵,∴.(2)∵,∴.例3.已知和分别是的倾斜角和斜率,当(1);(2);(3)时,分别求直线的斜率.解:当时,∵,∴.当时,∵,∴,∴.当时,∵,∴,∴.要点诠释:1.公式成立的前提条件是两条直线的斜率都存在
6、;2.当一条垂直直线的斜率不存在,另一条直线的斜率为0时,两条直线也垂直.三、规律方法指导1.由斜率的定义可知,当在围时,直线的斜率大于零;当在围时,直线的斜率小于零;当时,直线的斜率为零;当时,直线的斜率不存在.直线的斜率与直线的倾斜角(除外)为一一对应关系,且在和围分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此若需在或围比较倾斜角的大小只需比较斜率的大小即可,反之亦然.2.直线的斜率可用于直线的平行(重合)、垂直等位置关系的判断,直线倾斜角的围、大小的判断、求解及直线方程的求解等.3.我们
7、在判断两直线的平行与垂直时,往往先判断直线的斜率是否存在,然后再根据具体情况进行判断;4.判断两直线平行时,易忽略两直线重合的情况,需特别注意;5.平行、垂直的判断中,斜率不存在的情况易忽略致错,需特别注意.三:经典例题透析类型一:倾斜角与斜率的关系已知直线的倾斜角的变化围为,求该直线斜率的变化围;类型二:斜率定义已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率类型三:斜率公式的应用求经过点,直线的斜率并判断倾斜角为锐角还是钝角.直线与方程:一、知识
8、要点:1.倾斜角与斜率2.直线方程式的5种形式:点斜式、斜截式、两点式、截距式、一般式(注意用前四种方程的条件及一般式与其它形式转化的条件)3.两条直线平行、垂直的条件(与斜率及系数的关系)4.距离公式:两点间的距离公式、点到直线的距离公式、两平行直线间的距离公式练习1.已知直线经过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C.2D.不存在2.过
此文档下载收益归作者所有