资源描述:
《统计物理学试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一概念公式释义题概念四个,公式五个,释义一个(卷面是一百个题)1.孤立系:与外界既没有物质交换也没有能量交换的系统.2.闭系:与外界没有物质交换,但有能量交换的系统.3.开系:与外界既有物质交换,又有能量交换的系统.4.热力学平衡态:一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会到达这样的状态,系统的各种宏观性质在长时间内不发生任何变化.5.绝热壁:如果器壁具有这样的性质,当两个物体通过器壁相互接触时,两物体的状态可以完全独立的改变,彼此互不影响.6.透热壁:如果器壁具有这样的性质,当两个物体通过器壁相互接触时,两物体的状态不能完全独立的改变,彼此相互影响.7.热接
2、触:两个物体通过透热壁相互接触.8.热平衡:假设有两个物体,各自处在平衡状体啊.如果令这两个物体进行热接触,经验表明,一般来说两个物体的平衡状态都会受到破坏,他们的状态都将发生改变.但是经过足够长的时间之后,他们的状态便不再发生变化,而达到一个共同的平衡态.9.热平衡定律:如果两个物体各自与第三个物体达到热平衡,它们彼此也必处在热平衡.10.温度:互为热平衡的两个系统,分别存在一个状态函数,而且两个函数的数值相等,该函数就称为系统的温度.11.热力学极限:粒子数,体积而粒子数密度为有限的极限情况.12.准静态过程:进行的非常缓慢的过程,系统在过程中经历的每一个状态都可以看作平衡
3、态.13.内能:系统经绝热过程从初态变到终态,在过程中外界对系统所作的功仅取决于系统的初态和终态而与过程无关.由此可以用绝热过程中外界对系统所作的功定义一个态函数在终态和初态之差,该态函数称作内能.14.热量:如果系统所经历的过程不是绝热过程,则在过程中外界对系统所作的功不等于过程前后其内能的变化,二者之差就是系统在过程中以热量的形式从外界吸收的热量.15.热容量:一个系统在某一过程中温度升高所吸收的热量.16.焦耳定律:理想气体的内能只是温度的函数,与体积无关.17.热力学第二定律开氏表述:不可能从单一热源吸热使之完全变为有用的功而不引起其它变化.18.热力学第二定律克氏表述
4、:不可能把热量从低温物体传到高温物体而不引起其它变化.19.卡诺定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最高.20.熵(热力学):对于可逆过程,在初态A和终态B给定后,积分与可逆过程的路径无关.令,称为熵.21.熵增加原理:在绝热条件下,熵减少的过程是不可能实现的.22.节流过程:管子用不导热的材料包着,管子中间有一个多孔塞或节流阀.多孔塞两边各维持着较高的压强和较低的压强,于是气体从高压的一边经多孔塞不断地流到低压的一边,并达到定常状态.23.绝热去磁制冷:在绝热的条件下减少磁场时,磁介质的温度将降低.24.态密度:单位能量间隔内的可能状态数.25.等概率原理
5、:对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的.26.能量均分定理:对于处在温度为的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于.27.刘维尔定理:如果随着一个代表点沿正则方程所确定的轨道在相空间中运动,其领域的代表点密度是不随时间改变的常数.28.微正则系综:具有确定的粒子数、体积和能量的系统的分布函数.29.正则系综:具有确定的粒子数、体积和温度的系统的分布函数称为正则分布.30.巨正则系综:具有确定的体积、温度和化学势的系统的分布函数.31.系综:设想有大量结构完全相同的系统,处在相同的给定的宏观条件下.我们把这大量系统的集合称为系综.3
6、2.空间:以广义坐标和广义动量个变量为直角坐标构成一个空间.33.最概然分布:微观状态数最多的分布,出现的概率最大,称为最概然分布.34.熵(统计物理):在统计物理学中有,是系统混乱度的量度.1.体胀系数2.压强系数3.等温压缩系数4.绝热压缩系数5.,,的关系式6.理想气体的物态方程7.范德瓦耳斯方程8.位力展开9.顺磁性固体的物态方程10.热力学第一定律的数学表达式系统在终态和初态的内能之差等于在过程中外界对系统所作的功与系统从外界吸收的热量之和.11.等容热容量12.等压热容量13.焓在等压过程中系统从外界吸收的热量等于态函数焓的增值.14.理想气体的等压热容量和等容热容
7、量之差15.简单系统的热力学的基本微分方程在相邻的两个平衡态,状态变量、、的增量之间的关系.16.摩尔理想气体的熵(以、为自变量)17.摩尔理想气体的熵(以、为自变量)18.简单系统的焓的微分方程19.简单系统的自由能的微分方程20.简单系统的吉布斯函数的微分方程21.等容热容量的熵表示22.等压热容量的熵表示23.温度保持不变时内能随体积的变化率与物态方程的关系24.温度保持不变时焓随压强变化率与物态方程的关系25.等压热容量、等容热容量之差的一般关系26.简单系统的开系的热力学基本微分方