欢迎来到天天文库
浏览记录
ID:58639774
大小:350.00 KB
页数:4页
时间:2020-10-17
《2015含参数的一元二次不等式的解法(专题).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2015含参数的一元二次不等式的精选例题解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按项的系数的符号分类,即;例1解不等式:分析:本题二次项系数含有参数,,故只需对二次项系数进行分类讨论。解:∵解得方程两根∴当时,解集为当时,不等式为,解集为当时,解集为例2解不等式分析因为,,所以我们只要讨论二次项系数的正负。解当时,解集为;当时,解集为二、按判别式的符号分类,即;例3解不等式分析本题中由于的系数大于0,故只需考虑与根的情况。解:∵∴当即时,解集为;当即Δ=
2、0时,解集为;当或即,此时两根分别为,,显然,∴不等式的解集为例4解不等式解因所以当,即时,解集为;当,即时,解集为;当,即时,解集为R。例5解关于的x不等式分析:当m+1=0时,它是一个关于x的一元一次不等式;当m+11时,还需对m+1>0及m+1<0来分类讨论,并结合判别式及图象的开口方向进行分类讨论:⑴当m<-1时,⊿=4(3-m)>0,图象开口向下,与x轴有两个不同交点,不等式的解集取两边。⑵当-10,图象开口向上,与x轴有两个不同交点,不等式的解集取中间。⑶当m=3时,⊿=4(3-m)=
3、0,图象开口向上,与x轴只有一个公共点,不等式的解为方程的根。⑷当m>3时,⊿=4(3-m)<0,图象开口向上全部在x轴的上方,不等式的解集为。解:当m=3时,原不等式的解集为;当m>3时,原不等式的解集为。小结:⑴解含参数的一元二次不等式可先分解因式再讨论求解,若不易分解,也可对判别式分类讨论。⑵利用函数图象必须明确:①图象开口方向,②判别式确定解的存在范围,③两根大小。⑶二次项的取值(如取0、取正值、取负值)对不等式实际解的影响。例6解关于x的不等式思路点拨:先将左边分解因式,找出两根,然后就两根的大小关系写出解集。具体解
4、答请同学们自己完成。三、按方程的根的大小来分类,即;例7解不等式变式:分析:此不等式可以分解为:,故对应的方程必有两解。本题只需讨论两根的大小即可。解:原不等式可化为:,令,可得:∴当时,,故原不等式的解集为;当时,,可得其解集为;当时,,解集为。例8解不等式,分析此不等式,又不等式可分解为,故只需比较两根与的大小.解原不等式可化为:,对应方程的两根为,当时,即,解集为;当时,即,解集为2013含参数的一元二次不等式精选题1.(1)解不等式()(2)不等式的解集为,求的值.()2.解下列关于的不等式:(1)(2)(3)(4)(
5、5)3.(1)若不等式对恒成立,求实数的取值范围.()(2)若不等式的解集为,求实数的取值范围.()4.(1)已知,①若,求实数的取值范围.;()②若,求实数的取值范围.;()③若为仅含有一个元素的集合,求的值.()(2)已知,,求实数的取值范围.()(3)关于的不等式与的解集依次为与,若,求实数的取值范围.()(4)设全集,集合,若,求实数的取值范围.()(5)已知全集,,若,求实数的取值范围.()
此文档下载收益归作者所有