欢迎来到天天文库
浏览记录
ID:58588337
大小:950.50 KB
页数:42页
时间:2020-10-20
《数列求和的基本方法和技巧ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列求和基本方法:公式法分组求和法错位相减法裂项相消法并项求合法一.公式法:①等差数列的前n项和公式:②等比数列的前n项和公式:③④⑤例1:求和:一、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.cn=an+bn({an}、{bn}为等差或等比数列。)项的特征反思与小结:要善于从通项公式中看本质:一个等差{n}+一个等比{2n},另外要特别观察通项公式,如果通项公式没给出,则有时我们需求出通项公式,这样才
2、能找规律解题.分组求和法,+n11.求数列+23,+的前n项和。,222,32n2+123n解:=(1+2+3+…+n)Sn=(1+2)+(2+)+(3+)+…+(n+)2232n2+(2+2+2+…+2)n23=n(n+1)22(2-1)2-1n+=n(n+1)2+2-2n+1…分组求和法[例1]求数列的前n项和:,…解:设将其每一项拆开再重新组合得(分组)当a=1时,=(分组求和)当时,=n个二、错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减
3、法.既{anbn}型等差等比2.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求.【错位相减法】设{an}的前n项和为Sn,an=n·2n,则Sn=[例1]求数列前n项的和解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积设…………………………………①………………………………②(设制错位)①-②得∴2021/7/2813已知数列2021/7/2814解:第一步,写出该数列求和的展开等式第二步,上式左右两边乘以等
4、比数列公比2021/7/2815第三步,两式进行错位相减得:化简整理得:1.设数列满足a1+3a2+32a3+…+3n-1an=,a∈N*.(1)求数列的通项;(2)设bn=,求数列的前n项和Sn.变式探究1.设数列满足a1+3a2+32a3+…+3n-1an=,a∈N*.(1)求数列的通项;(2)设bn=,求数列的前n项和Sn.解析:(1)a1+3a2+32a3+…+3n-1an=,①(2)bn=n·3n,Sn=1·3+2·32+3·33+…+n·3n,3Sn=1·32+2·33+3·34+…+
5、(n-1)·3n+n·3n+1两式相减,得-2Sn=3+32+33+…+3n-n·3n+1,2021/7/28191、2、已知数列求该数列的前n项和。三、裂项求和法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为分裂通项法.(见到分式型的要往这种方法联想)常见的裂项公式有:常见的裂项公式有:例1:求和裂项法求和提示:∴1-22+32-42+…+(2n-1)2-(2n)2=?局部重组转化为常见数列四、
6、并项求和练习:已知Sn=-1+3-5+7+…+(-1)n(2n-1),1)求S20,S212)求SnS20=-1+3+(-5)+7+……+(-37)+39S21=-1+3+(-5)+7+(-9)+……+39+(-41)=20=-21五.相间两项成等差等比综合∴{an}是等差数列,an=1+(n-1)=n1.若a1=1,且an+am=an+m(n,m∈N*),则an=_______解:n=m=1时,a2=a1+a1=2,得a1=1,a2=2m=1时,由an+am=an+m得an+1=an+1,即an
7、+1-an=1n2.若b1=2,且bmbn=bm+n,则bn=_____________解:n=m=1时,b2=b1·b1=4,即b1=2,b2=4,m=1时,由bnbm=bn+m得bn+1=bn·b1=2bn,故{bn}是首项为b1=2,公比为q=2的等比数列,bn=2·2n-1=2n2n练习解:(1)证明:由题意得2bn+1=bn+1,∴bn+1+1=2bn+2=2(bn+1).又∵a1=2b1+1=1,∴b1=0,b1+1=1≠0.故数列{bn+1}是以1为首项,2为公比的等比数列.3.已知
8、二次函数f(x)=x2-5x+10,当x∈(n,n+1](n∈N*)时,把f(x)在此区间内的整数值的个数表示为an.(1)求a1和a2的值;(2)求n≥3时an的表达式;(2)当n≥3时,f(x)是增函数,故an=f(n+1)-f(n)=2n-4.
此文档下载收益归作者所有