资源描述:
《高三第一轮复习函数的概念课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数函数及其表示要点梳理1.函数的基本概念(1)函数定义设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A中的一个数x,在集合B中数集任意都有的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的;与x的值相对应的y值叫做函数值,函数值的集合{f(x)
2、x∈A}叫做函数的.显然,值域是集合B的子集.(3)函数的三要素:、和.(4)同一函数:如果两个函数的和完全一致唯一确定定义域值域定义域值域对应关系定义域对应关系2
3、.函数的表示法表示函数的常用方法有:、、.3.映射的概念设A、B是两个非空集合,如果按照某种对应法则f,使对于集合A中的任意一个元素x,在集合B中确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一个映射4.由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,B必须是.解析法图象法列表法都有唯一函数非空数集一个映射基础自测1.设集合M={x
4、0≤x≤2},N={y
5、0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②解析由映射
6、的定义,要求函数在定义域上都有图象,并且一个x对应着一个y,据此排除①④,选C.C2.给出四个命题:①函数是其定义域到值域的映射;②f(x)=是函数;③函数y=2x(x∈N)的图象是一条直线;④f(x)=与g(x)=x是同一个函数.其中正确的有()A.1个B.2个C.3个D.4个解析由函数的定义知①正确.∵满足f(x)=的x不存在,∴②不正确.又∵y=2x(x∈N)的图象是一条直线上的一群孤立的点,∴③不正确.又∵f(x)与g(x)的定义域不同,∴④也不正确.A3.下列各组函数是同一函数的是()解析排除A;排除B;当即x≥1时,y=
7、x
8、+
9、x-1
10、=2x
11、-1,排除C.故选D.答案D4.函数的定义域为.解析若使该函数有意义,则有∴x≥-1且x≠2,∴其定义域为{x
12、x≥-1且x≠2}.{x
13、x≥-1且x≠2}5.已知f()=x2+5x,则f(x)=.解析题型一求函数的定义域【例1】(2009·江西理)函数的定义域为()A.(-4,-1)B.(-4,1)C.(-1,1)D.(-1,1]求函数f(x)的定义域,只需使解析式有意义,列不等式组求解.解析思维启迪C题型分类深度剖析探究提高(1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集,其准则一般是:①分式中
14、,分母不为零;②偶次方根中,被开方数非负;③对于y=x0,要求x≠0;④对数式中,真数大于0,底数大于0且不等于1;⑤由实际问题确定的函数,其定义域要受实际问题的约束.(2)抽象函数的定义域要看清内、外层函数之间的关系.知能迁移1(2008·湖北)函数的定义域为()A.(-∞,-4]∪[2,+∞)B.(-4,0)∪(0,1)C.[-4,0)∪(0,1]D.[-4,0)∪(0,1)解析答案D题型二求函数的解析式【例2】(1)设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,被x轴截得的线段长为,求f(x)的解析式;(2)已知(3)
15、已知f(x)满足2f(x)+=3x,求f(x).问题(1)由题设f(x)为二次函数,故可先设出f(x)的表达式,用待定系数法求解;问题(2)已知条件是一复合函数的解析式,因此可用换元法;问题(3)已知条件中含x,,可用解方程组法求解.思维启迪解(1)∵f(x)为二次函数,∴设f(x)=ax2+bx+c(a≠0),且f(x)=0的两根为x1,x2.由f(x-2)=f(-x-2),得4a-b=0.①②由已知得c=1.③由①、②、③式解得b=2,a=,c=1,∴f(x)=x2+2x+1.探究提高求函数解析式的常用方法有:(1)代入法,用g(x)代入f(x)中的x
16、,即得到f[g(x)]的解析式;(2)拼凑法,对f[g(x)]的解析式进行拼凑变形,使它能用g(x)表示出来,再用x代替两边的所有“g(x)”即可;(3)换元法,设t=g(x),解出x,代入f[g(x)],得f(t)的解析式即可;(4)待定系数法,若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值,确定相关的系数即可;(5)赋值法,给变量赋予某些特殊值,从而求出其解析式.知能迁移2(1)已知f(+1)=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)设f(x)是R上的函数,且f(
17、0)=1,对任意x,y∈R恒有f(x-y)=f(x)-y(2x-y