欢迎来到天天文库
浏览记录
ID:58546969
大小:431.61 KB
页数:17页
时间:2020-10-21
《三年高考高考数学试题分项版解析-专题17-椭圆-文.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三年高考高考数学试题分项版解析-专题17-椭圆-文--------------------------------------------------------------------------作者:_____________--------------------------------------------------------------------------日期:_____________专题17椭圆文考纲解读明方向考纲解读考点内容解读1.椭圆的定义及其标准方程掌握椭圆的定义、几何2.椭圆的几何性质图形、标准方程及简单性质3.直线与椭圆的位置关系要求常考题型预测热
2、度选择题掌握★★★解答题填空题掌握★★★解答题掌握解答题★★★分析解读1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1.【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A.B.C.D.【答案】D2【解析】分析:设,则根据平面几何知识
3、可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2.【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.点睛:解
4、析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年天津卷文】设椭圆的右顶点为A,上顶点为B已知椭圆的离.心率为,.3(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点,且点,M均在第四象限.MP若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程
5、组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.44.【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆有两个不同的交点,.MAB(Ⅰ)求椭圆M的方程;(Ⅱ)若,求的最大值;(Ⅲ)设,直线PA与椭圆M的另一个交点为,直线PB与椭圆的另一个交点为.CMD若C,D和点共线,求k
6、.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:(Ⅰ)由题意得,所以,又,所以,所以,所以椭圆的标准方程为.(Ⅱ)设直线的方程为,由消去可得,则,即,设,,则,,则,易得当时,,故的最大值为.5点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将
7、根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2017年高考全景展示1.【2017浙江,2】椭圆x2y21的离心率是94A.13B.5C.2333D.59【答案】B【解析】试题分析:e945,选B.33【考点】椭圆的简单几何性质6【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系
此文档下载收益归作者所有