三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc

ID:50135853

大小:1.08 MB

页数:15页

时间:2020-03-05

三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc_第1页
三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc_第2页
三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc_第3页
三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc_第4页
三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc_第5页
资源描述:

《三年高考2016_2018高考数学试题分项版解析专题17椭圆理含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题17椭圆考纲解读明方向考纲解读考点内容解读要求常考题型预测热度1.椭圆的定义及其标准方程掌握椭圆的定义、几何图形、标准方程及简单性质掌握选择题解答题★★★2.椭圆的几何性质掌握填空题解答题★★★3.直线与椭圆的位置关系掌握解答题★★★分析解读 1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为

2、12分,难度较大.2018年高考全景展示1.【2018年理数全国卷II】已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A.B.C.D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.15点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【2018年浙江

3、卷】已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.【答案】5点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3.【2018年理北京卷】已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.【答案】2【解

4、析】分析:由正六边形性质得渐近线的倾斜角,解得双曲线中关系,即得双曲线N的离心率;由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,解得椭圆M的离心率.详解:由正六边形性质得椭圆上一点到两焦点距离之和为,再根据椭圆定义得,所以椭圆M的离心率为双曲线N的渐近线方程为,由题意得双曲线N15的一条渐近线的倾斜角为,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2018年理数天津卷】设椭圆(a>b>0)的左焦点为F,

5、上顶点为B.已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若(O为原点),求k的值.【答案】(Ⅰ);(Ⅱ)或【解析】分析:(Ⅰ)由题意结合椭圆的性质可得a=3,b=2.则椭圆的方程为.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由题意可得5y1=9y2.由方程组可得.由方程组可得.据此得到关于k的方程,解方程可得k的值为或详解:(Ⅰ)设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为

6、.(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组15消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为或点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.【2018年全国卷Ⅲ理】已知斜率为的直线与椭

7、圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或(2)由题意得,设,则.由(1)及题设得.又点P在C上,所以,从而,.于是.同理.所以.故,即成等差数列.15设该数列的公差为d,则.②将代入①得.所以l的方程为,代入C的方程,并整理得.故,代入②解得.所以该数列的公差为或.点睛:本题主要考查直线与椭圆的位置关系,等差数列的性质,第一问利用点差法,设而不求可减小计算量,第二问由已知得到,求出m得到直线方程很关键,考查了函数与方程的思想,考察

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。