二次函数一般式与顶点坐标公式练习.docx

二次函数一般式与顶点坐标公式练习.docx

ID:58546916

大小:32.32 KB

页数:5页

时间:2020-10-21

二次函数一般式与顶点坐标公式练习.docx_第1页
二次函数一般式与顶点坐标公式练习.docx_第2页
二次函数一般式与顶点坐标公式练习.docx_第3页
二次函数一般式与顶点坐标公式练习.docx_第4页
二次函数一般式与顶点坐标公式练习.docx_第5页
资源描述:

《二次函数一般式与顶点坐标公式练习.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、已知函数yx124.(1)该抛物线经过怎样的平移能经过原点.(2)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.1、二次函数ya(xh)2k的图像和yax2的图像之间的关系。2.二次函数y=a(x-h)2+k的性质:y=y=a(x-h)2+ky=y=a(x-h)2+k抛物线(a>0)(a<0)对称轴顶点坐标开口方向增减性最值问题一:将一般式转化为顶点式试将下列函数转化为顶点式,并说出其对称轴,顶点坐标。(1)yx26x2(2)y1x2x24(3)y9x26x1问题二:顶点坐标公式将yax2bxc转化为顶点式:yax2

2、bxcax2bxcaa2b22ax2bbc2a2a2aa24acb2axb2a4a因此,二次函数yax2bxc的图像是一条抛物线,它的对称轴是直线xb,2a顶点是b,4acb22a4a利用顶点坐标公式填写下列表格:抛物线yx23x2y2x22x1y1x22x322对称轴顶点坐标开口方向增减性最值问题三:y=a(x-2)(x+3)与二次函数图象的顶点坐标x轴的交点坐标是,对称轴,,开口方向。例1当x=时,二次函数y=x2+2x-2有最小值.例2、若抛物线y=-x2+4x+k的最大值为3,则k=利用顶点坐标公式的小技巧:2b4acb2对于函数yaxbxc,当x=2a

3、时,y=4a,所以可以求出顶点横坐标之后,通过代入解析式求得顶点的纵坐标。试一试:211、函数y2x6x2的顶点坐标为,当x=时,y取最值为.与坐标轴的交点坐标,分析增减性,用5点作图法完成作图。2、当x为实数时,代数式x2-2x-3的最小值是,此时x=.3、求二次函数yx2x6的图象与x轴和y轴的交点坐标五、课后练习:1、抛物线y=2x2-4x+3的顶点坐标是2、二次函数y=x2+2x-3的图象的对称轴是直线3、抛物线y=-3x2+1的顶点坐标是4、二次函数y=-(x+1)2-2的图象开口向,对称轴为,顶点坐标为6、抛物线y=-2x2-4x+1的顶点关于x轴对称的点的坐标为

4、7、二次函数y=ax2-2x+1的图象经过点(1,2),则其图象的开口方向8、函数y=-x2+2x-3的对称轴是,有最值,且最值为9、已知二次函数y=-x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为10、抛物线y=2x2-bx+3的对称轴是直线x=1,则b的值为11、二次函数y=x2-2x+3的最小值是12、二次函数y=mx2-4x+1有最小值-3,则m等于13、将抛物线y=x2-2向左平移3个单位,所得抛物线的函数表达式为14、在平面直角坐标系中,将二次函数y=(x-2)2+2的图象向左平移2个单位,所得图象对应的函数解析式为15、将抛物线y=x2+x向下平移

5、2个单位,所得抛物线的表达式是16、把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b的值为17、已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.8、二次函数yx2bxc的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,得到的图象的函数解析式为yx22x1,则b与c分别等于()

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。