欢迎来到天天文库
浏览记录
ID:58430430
大小:1.05 MB
页数:43页
时间:2020-09-07
《多模态相似性学习课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、LearningMulti-modalSimilarity1AbstractBodyIntroductionAGraphicalViewofSimilarityPartialOrderEmbeddingMultipleKernelEmbeddingExperimentsHardnessofDimensionalityReductionConclusionAcknowledgmentsAppendixAppendixA.EmbeddingPartialOrdersAppendixB.SolverAppendixC.RelationshiptoAUCReferences2
2、Aim:integratheterogeneousdataintoasingle,unifiedsimilarityspaceSolution:multiplekernellearningtechniqueKeywords:multiplekernellearning,metriclearning,similarityAbstract31IntroductionNoobviouschoiceofsimilaritymeasureinmorecomplex,multi-mediadomainsUseside-informationtooptimizeasimilarit
3、yfunctionMetriclearningmethods度量学习Multidimensionalscaling(MDS)techniques多维标度分析Learnasuitablemetricandthensimilaritytonew,unseendatacanbecomputedeitherdirectlyorviaout-of-sampleextensionsUsingsimilaritymeasurementsasside-informationtoguidetheconstructionofasimilarityspaceformulti-modalda
4、ta41IntroductionCollectsimilarityinformationintheformoftriadicorrelativecomparisonsReasons:SimilaritymaybeahighlysubjectiveconceptandvaryfromonelabelertothenextAsinglelabelermaynotbeabletoconsistentlydecideifortowhatextenttwoobjectsaresimilarButasinglelabelerisabletoreliablyproducearank
5、-orderingofsimilarityoverpairsExamples:Answerquestionsoftheform:“Isxmoresimilartoyorz?”51IntroductionDevelopaframeworkforintegratingmulti-modaldataThreeguidingprinciples:Robustagainstsubjectivityandinter-labelerdisagreement.Beabletointegratemulti-modaldatainanoptimalwayBepossibletocompu
6、tedistancestonew,unseendataFormulateasalearningproblem:GivenadatasetandacollectionofrelativecomparisonsbetweenpairsLearnarepresentationofthedatathatoptimallyreproducesthesimilaritymeasurements61.1ContributionsTwo-fold:developthepartialorderembedding(POE)frameworkformulateanovelmultiplek
7、ernellearning(MKL)algorithmFigure1:Anoverviewofproposedframeworkformulti-modalfeatureintegration71.2PreliminariesPartialordersatisfies:Irreflexivity,Transitivity,Anti-symmetryForadirectedgraphG,G∞denoteitstransitiveclosure;GmindenotetransitivereductionX={x1,x2,...,xn}denotethet
此文档下载收益归作者所有