已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc

已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc

ID:58381207

大小:1.36 MB

页数:14页

时间:2020-05-06

已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc_第1页
已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc_第2页
已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc_第3页
已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc_第4页
已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc_第5页
资源描述:

《已知正方形ABCD中-E为对角线BD上一点-过E点作EF⊥.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)DFBACE第24题图③FBADCEG第24题图②FBADCEG第24题图①解:(1)证明:在Rt△FCD中,∵G为DF

2、的中点,∴CG=FD.………1分同理,在Rt△DEF中,EG=FD.…………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=CG.…………………………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………………………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG与Rt△ENG中,∵AM=EN,

3、MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………………………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……………………4分在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………………………5分∴在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴△MEC为直角三角形.∵MG=CG,∴EG=MC.………8分(3)(1)中的结论仍然成立,即EG

4、=CG.其他的结论还有:EG⊥CG.……10分14OxyNCDEFBMA【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.【012】解:(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,.点在抛物线上,将的坐标代入,得:解之,得:抛物线的解析式为:.4分OxyNCDEFBMAP(2

5、)抛物线的对称轴为,.6分连结,,,又,,.8分(3)点在抛物线上.9分设过点的直线为:,14将点的坐标代入,得:,直线为:.10分过点作圆的切线与轴平行,点的纵坐标为,将代入,得:.点的坐标为,当时,,所以,点在抛物线上.12分【013】如图,抛物线经过三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;OxyABC41(第26题图)若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.【013】解:(1)该抛物线

6、过点,可设该抛物线的解析式为.将,代入,得解得此抛物线的解析式为.(3分)(2)存在.(4分)OxyABC41(第26题图)DPME如图,设点的横坐标为,则点的纵坐标为,当时,,.又,①当时,,14即.解得(舍去),.(6分)②当时,,即.解得,(均不合题意,舍去)当时,.(7分)类似地可求出当时,.(8分)当时,.综上所述,符合条件的点为或或.(9分)(3)如图,设点的横坐标为,则点的纵坐标为.过作轴的平行线交于.由题意可求得直线的解析式为.(10分)点的坐标为..(11分).当时,面积最大..(13分)(第26题)OABCMN【014】在平面直角坐标中,边长为2的

7、正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时,求正方形旋转的度数;(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.【014】(1)解:∵点第一次落在直线上时停止旋转,∴旋转了.14∴在旋转过程中所扫过的面积为.……………4分(2)解:∵∥,∴,.∴.∴.又∵,∴.又∵,,∴.∴.∴.∴旋转过程中,当和平行时,正方形旋转的度数为.………………………………………

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。