对数函数运算公式.pdf

对数函数运算公式.pdf

ID:58323530

大小:87.18 KB

页数:2页

时间:2020-09-11

对数函数运算公式.pdf_第1页
对数函数运算公式.pdf_第2页
资源描述:

《对数函数运算公式.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯bloga1、abba2、logabMNMN3、logalogalogaMNMN4、logalogaloganMM5、loganlogaM1M6、loganlogan1、a^(log(a)(b))=b2、log(a)(a^b)=b3、log(a)(MN)=log(a)(M)+log(a)(N);4、log(a)(M÷N)=log(a)(M)-log(a)(N);5、log(a)(M^n)=nlog(a)(M)6

2、、log(a^n)M=1/nlog(a)(M)推导1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。2、因为a^b=a^b令t=a^b所以a^b=t,b=log(a)(t)=log(a)(a^b)3、MN=M×N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]a^[log(a)(N)]=(M)*(N)×由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}两种方法只是性质不同,采用方法依实际情况而

3、定又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)4、与(3)类似处理MN=M÷N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]÷a^[log(a)(N)]÷由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]-[log(a)(N)]}÷又因为指数函数是单调函数,所以log(a)(M÷N)=log(a)(M)-log(a)(N)5、与(3)类似处理M^n=M^n1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最

4、新资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)]推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(b^m)ln(a^n)÷换底

5、公式的推导:设e^x=b^m,e^y=a^n则log(a^n)(b^m)=log(e^y)(e^x)=x/yx=ln(b^m),y=ln(a^n)得:log(a^n)(b^m)=ln(b^m)ln(a^n)÷由基本性质4可得log(a^n)(b^m)=[mln(b)]×[n÷×ln(a)]=(mn)÷×{[ln(b)][ln(a)]}÷再由换底公式log(a^n)(b^m)=m÷n×[log(a)(b)]2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。