欢迎来到天天文库
浏览记录
ID:58182717
大小:365.00 KB
页数:9页
时间:2020-04-26
《正弦定理-教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《正弦定理》教学设计郭来华一、教学内容分析“正弦定理”是《普通高中课程标准数学教科书·数学(必修5)》(人教版)第一章第一节的主要内容,它既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量等知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。为什么要研究正弦定理?正弦定理是怎样发现的?其证明方法是怎样想到的?还有别的证法吗?这些都是教材没有回答,而确实又是学生所关心的问题。本节课是“正弦定理”教学的第一课时,其主要任务是
2、引入并证明正弦定理,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且通过对定理的探究,能使学生体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。二、学生学习情况分析学生在初中已经学习了解直角三角形的内容,在必修4中,又学习了三角函数的基础知识和平面向量的有关内容,对解直角三角形、三角函数、平面向量已形成初步的知识框架,这不仅是学习正弦定理的认知基础,同时又是突破定理证明障碍的强有力的工具。正弦定
3、理是关于任意三角形边角关系的重要定理之一,《课程标准》强调在教学中要重视定理的探究过程,并能运用它解决一些实际问题,可以使学生进一步了解数学在实际中的应用,从而激发学生学习数学的兴趣,也为学习正弦定理提供一种亲和力与认同感。三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学
4、习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。四、教学目标1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。3、情感态度与价
5、值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。五、教学重点与难点重点:正弦定理的发现和推导难点:正弦定理的推导六、教学过程设计(一)设置情境利用投影展示:如图1,一条河的两岸平行,河宽。因上游暴发特大洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及留守人员用船尽快转运到正对岸的码头B处或其下游的码头C处,请你确定转运方案。已知船在静水中的速度,水流速度。【设计意图】培养学生的“数学起源于生活,运用于生活”的思想意识,同时情境问题的图形及解题思路均为研
6、究正弦定理做铺垫。(二)提出问题师:为了确定转运方案,请同学们设身处地地考虑有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。待各小组将问题交给老师后,老师筛选了几个问题通过投影向全班展示,经大家归纳整理后得到如下的五个问题:1、船应开往B处还是C处?2、船从A开到B、C分别需要多少时间?3、船从A到B、C的距离分别是多少?4、船从A到B、C时的速度大小分别是多少?5、船应向什么方向开,才能保证沿直线到达B、C?【设计意图】通过小组交流,提供一定的研究学习与情感交流的时空,培养学生合作学习的
7、能力;问题源于学生,突出学生学习的主体性,能激发学生学习的兴趣;问题通过老师的筛选,确定研究的方向,体现教师的主导作用。师:谁能帮大家讲解,应该怎样解决上述问题?大家经过讨论达成如下共识:要回答问题1,需要解决问题2,要解决问题2,需要先解决问题3和4,问题3用直角三角形知识可解,所以重点是解决问题4,问题4与问题5是两个相关问题。因此,解决上述问题的关键是解决问题4和5。师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。生1:船从A开往B的情况如图2,根据
8、平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小及与的夹角:,用计算器可求得船从A开往C的情况如图3,,,易求得,还需求及,我还不知道怎样解这两个问题。师:请大家思考,这两个问题的数学实质是什么?部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。【设计意图】将问题数学化,有助于加深学生对问题的理解,有助于培养学生的数学意识。师:请大家讨论一下,如何解决这两个问题
此文档下载收益归作者所有