欢迎来到天天文库
浏览记录
ID:58151565
大小:1.04 MB
页数:19页
时间:2020-04-25
《北师大版高中数学必修5-解三角形教案(集体备课).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、玉山县樟村中学2015-2016学年度第二学期备课稿高一年级数学学科主备人孙晶晶课 题1.1正弦定理第1课时教学目标1、在创设日常生活的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,由简单到复杂,步步推进,探索和证明正弦定理。2、能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。重点难点重点:正弦定理的探索与证明;正弦定理的基本应用。难点:正弦定理的探索与证明。教学准备PPT,三角板教学方法以学生为中心,以教师为主导,启发式教学
2、。教学过程[创设情景]固定ABC的边CB及B,使边AC绕着顶点动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来?[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有,,又,则从而在直角三角形ABC中,思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学
3、生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则同理可得,二次备课从而思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即[理解定理]:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且
4、比例系数为同一正数,即存在正数k使,,;(2)等价于,,从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如;②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。[例题分析]:例1:某地出土一块类似三角形刀状的古代玉佩,其一角已破损,现测得如下数据:,,。为了复原,请计算原玉佩两边的长(结果精确到)分析:将分别延长相交于一点,在中,已知的长度和角与,可以通过正弦定理求的长解:将分别延长交于一点,在中,,
5、,,因为,所以,答:原玉佩两边的长分别约为例2:台风中心位于某市正东方向300处,正以的速度向西北方向移动,距离台风中心范围内将会受其影响。如果台风风速不变,那么该市从何时起要遭受台风影响?这种影响持续多长时间(结果精确到)?分析:台风沿着运动时,由于,所以开始台风影响不了城市,由点到台风移动路径的最小距离所以台风在运动过程中肯定要影响城市,这就要在上求影响的始点和终点,然后根据台风的速度计算台风从到持续的时间解:设台风中心从点向西北方向沿射线移动,该市位于点的正西方向处的点,假设经过,台风中心到
6、达点,则在中,由正弦定理得知利用计算器得角当时,所以,同理:当时,,答:约后将要遭受台风影响,持续约思考:通过这个问题的解决我们发现,如果已知两边和其中一边的对角,解三角形时会出现两解的情况,还会出现其他情况吗?为什么有两个解?你还能用其他方法解决这个问题吗?已知a,b和A,用正弦定理求B时的各种情况:⑴若A为锐角时:⑵若A为直角或钝角时:无解一解课堂小结:(1)正弦定理:(2)正弦定理的证明(3)正弦定理的应用范围①已知三角形的两角和任一边,求三角形的其他边和角②已知三角形的两边和其中一边的对角
7、,求三角形的其他边和角(4)解三角形时根的个数数问题课堂练习:1、已知在解:∴由得由得2、在解:∵∴3、解:,[课堂小结](由学生归纳总结)(1)定理的表示形式:;或,,(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。板书设计课内外作业布置作业:教学反思玉山县樟村中学2015-2016学年度第二学期备课稿高一年级数学学科主备人孙晶晶课 题1.2余弦定理第1课时教学目标一、知识与技能1.学会利用余弦定理解决有关平几问题及判断三角形的形状,掌握
8、转化与化归的数学思想;2.能熟练地运用余弦定理解斜三角形;二、过程与方法通过对余弦定理的运用,培养学生解三角形的能力及运算的灵活性三、情感、态度与价值观培养学生在方程思想指导下处理解三角形问题的运算能力;重点难点重点:余弦定理的发现和证明过程及其基本应用;教学难点:勾股定理在余弦定理的发现和证明过程中的作用。教学准备教学用具:多媒体、实物投影仪.教学方法教学过程[创设情景]如图1.1-4,在ABC中,设BC=a,AC=b,AB=c,已知a,b和C,求边c[探索研究]联系已经学过的知
此文档下载收益归作者所有