2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx

2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx

ID:58061070

大小:242.88 KB

页数:18页

时间:2020-04-09

2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx_第1页
2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx_第2页
2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx_第3页
2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx_第4页
2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx_第5页
资源描述:

《2019届高考数学二轮复习专题五解析几何第3讲圆锥曲线中的热点问题学案理.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3讲 圆锥曲线中的热点问题高考定位 1.圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一;2.以椭圆或抛物线为背景,尤其是与条件或结论相关存在性开放问题.对考生的代数恒等变形能力、计算能力有较高的要求,并突出数学思想方法考查.真题感悟1.(2018·浙江卷)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=________时,点B横坐标的绝对值最大.解析 设A(x1,y1),B(x2,y2),由=2,得即x1=-2x2,y1=3-2y2.因为点A,B在椭圆上,所以得y2=m+,所以x=m-(3-2y2

2、)2=-m2+m-=-(m-5)2+4≤4,所以当m=5时,点B横坐标的绝对值最大,最大值为2.答案 52.(2018·北京卷)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证:+为定值.(1)解 因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x.由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)

3、2-4×k2×1>0,解得k<1,又因为k≠0,故k<0或0b>0),四点P1(1,1),P2(0,1),P

4、3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.(1)解 由于点P3,P4关于y轴对称,由题设知C必过P3,P4.又由+>+知,椭圆C不经过点P1,所以点P2在椭圆C上.因此解得故C的方程为+y2=1.(2)证明 设直线P2A与直线P2B的斜率分别为k1,k2.如果直线l的斜率不存在,l垂直于x轴.设l:x=m,A(m,yA),B(m,-yA),k1+k2=+==-1,得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.从而可设l:y=kx+m(m≠1).将y=kx+m代入

5、+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.则k1+k2=+=+=.由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.∴(2k+1)·+(m-1)·=0.解之得m=-2k-1,此时Δ=32(m+1)>0,方程有解,∴当且仅当m>-1时,Δ>0,∴直线l的方程为y=kx-2k-1,即y+1=k(x-2).所以l过定点(2,-1).考点整合1.圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子

6、的几何意义求解.温馨提醒 圆锥曲线上点的坐标是有范围的,在涉及到求最值或范围问题时注意坐标范围的影响.2.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方程的斜截式:y=kx+m,则直线必过定点(0,m).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.3.存在性问题的解题步骤:(1)先假设存在,引入参变量,根据题目条件列出关

7、于参变量的方程(组)或不等式(组).(2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在.(3)得出结论.热点一 圆锥曲线中的最值、范围【例1】(2018·西安质检)已知椭圆C:+=1(a>b>0)的离心率e=,直线x+y-1=0被以椭圆C的短轴为直径的圆截得的弦长为.(1)求椭圆C的方程;(2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=

8、MA

9、·

10、MB

11、,求λ的取值范围.解 (1)原点到直线x+y-1=0的距离为,由题得+=b

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。