欢迎来到天天文库
浏览记录
ID:57824831
大小:84.00 KB
页数:11页
时间:2020-03-30
《数量关系公式大全.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一课数字特性及数列相关一、整除特性1、能被常见数字整除的数字特性(1)被2整除特性:偶数(2)能被3整除特性:一个数字每位数字相加能被3整除。可以把被三整除的个别数字直接消掉,以减少计算量(3)被4和25整除特性:只看一个数字的末两位能不能被4(25)整除(4)被5整除特性:末尾是0或5(5)被6整除特性:兼被2和3整除的特性(6)被7整除特性:划分出末尾3位,大数减小数除以7,能整除说明这个数能被7整除(7)被8和125整除特性:看一个数的末3位,能被8(125)整除(8)被9整除特性:一个数字每位数字相加能被9整除。可以把被三整除的个别数字直接消掉,以减少计算量(9)被1
2、1整除:奇数位的和-偶数位的和,能被11整除2、关于整除的其他注意事项(1)被合数整除的数字,也能被其因数整除(2)三个连续的自然数之和(积)能被3整除(3)四个连续自然数之和是偶数,但不能被4整除(4)平方数的尾数只能是0、1、4、5、6、9。二、奇、偶、质、合性1、奇偶性奇数:不能被2整除的整数偶数:能被2整除的整数(0是偶数)2、奇数和偶数的运算规律奇数±奇数=偶数;偶数±偶数=偶数奇数±偶数=奇数;奇数×奇数=奇数偶数×偶数=偶数;奇数×偶数=偶数3、质合性11质数:一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称为素数),如2、5、7、11、
3、13合数:一个正整数除了能被1和它本身整除外,还能被其他的正整数整除,这样的正整数叫做合数1既不是质数也不是合数2、方法技巧及规律(1)两个连续的自然数之和(或差)必为奇数。(2)两个连续自然数之积必为偶数。(3)乘方运算后,数字的奇偶性不变。(4)2是唯一一个为偶数的质数如果两个质数的和(或差)是奇数,那么其中必有一个是2如果两个质数的积是偶数,那么其中必有一个是2三、公倍数、公约数(往往考察周期性问题)四、余数问题基本形式:被除数=除数×商+余数(都是正整数)1、同余定义两个整数a、b除以自然数m(m>1),所得余数相同,则称整数a、b对自然数m同余。2、四种常考形式:余同
4、取余、和同加和,差同减差,最小公倍数做周期。(1)余同取余,公倍数做周期:一个数除以几个不同的数,余数相同,则这个数可以表示成这几个除数的最小公倍数的倍数与余数相加的形式。(2)和同加和,公倍数做周期:一个数除以几个不同的数,除数与余数之和相同,则这个数可以表示成这几个除数的最小公倍数的倍数与该和相加的形式。(3)差同减差,公倍数做周期:一个数除以几个不同的数,除数与余数之差相同,则这个数可以表示成这几个除数的最小公倍数的倍数与该差相减的形式。(4)如果三个不符合口诀,先两个结合,再跟第三结合五、尾数乘方问题尾数变化规律:底数留个位,指数除4留余数,余数为0转成411六、数的拆
5、分与重排数的拆分是将一个数拆分成几个因数相乘或者相加的形式,经常需要综合应用整除性质、奇偶性质、因式分解、同余理论等解答数字的重排问题时,经常需要借助于尾数法进行考虑、判断,同时可以利用列方程法、代入法、假设法等一些方法,进行快速求解。七、不定方程未知数个数多于方程个数叫做不定方程。通常只考虑他的整数解或正整数解。常用解法有:综合利用整数的奇偶性,质合性、整除特性、尾数法、余数特性、特殊之法、代入排除法等多种数学知识得到答案。八、数列(等差与等比)(1)等差数列:求和公式(上底+下底×高÷2)、中位数求和公式(重点)。(2)等比数列:an=a1q(n-1)第二课终极比例法比例就
6、是数量之间的对比关系,或指一种事物在整体中所占的分量,运用比例法是将繁琐的数值简化为简单的数值进行分析。比例问题的重点在于找出两种相关联的量,并明确两者间的比例关系。比和比例的性质1.正比:a÷b=k(k=常数),则称a、b成正比2.反比:a×b=k(k=常数),则称a、b成反比采用比例法的一个重要条件是含有一个固定的乘除等式关系,及1、2所述的正反比例,实际应用中的路程=速度×时间,总量=效率×时间,溶剂=溶液×浓度,利润=成本×利润率。需特别注意:三个量中必须有一个量是固定的,另外两个量才有相对关系。差值比例:一、常规比例二、工程问题工程问题是重点11一、工程问题的本质:将
7、一般的工作问题分数化,就是研究工作总量、工作效率、工作时间三者之间的关系问题。二、常用的数量关系式为:工作总量=工作效率×工作时间三、工程问题的两大利器1、比例法2、特殊值法四、核心要点:方程问题,用比例不用方程,用份数不用分数五、题型分类:单人完成工程问题、全程合作问题、分阶工程问题、轮流合作型、水管问题、时间效率转化三、和差比例法四、三量比例法遇到三个量或者多个量,建立比例关系,需要通过某一个量的统一,比如①甲:乙=2:3,②乙:丙=4:5,需要对乙进行搭桥统一成12。五、恒值比例法恒值
此文档下载收益归作者所有