应用FFT对信号进行频谱分析.doc

应用FFT对信号进行频谱分析.doc

ID:57643770

大小:160.50 KB

页数:7页

时间:2020-08-29

应用FFT对信号进行频谱分析.doc_第1页
应用FFT对信号进行频谱分析.doc_第2页
应用FFT对信号进行频谱分析.doc_第3页
应用FFT对信号进行频谱分析.doc_第4页
应用FFT对信号进行频谱分析.doc_第5页
资源描述:

《应用FFT对信号进行频谱分析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、实验二应用FFT对信号进行频谱分析一、实验目的1、加深对离散信号的DTFT和DFT的及其相互关系的理解。2、在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法极其程序的编写。3、熟悉应用FFT对典型信号进行频谱分析的方法。4、了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。二、实验原理和方法一个连续信号的频谱可以用它的傅里叶变换表示(2—1)如果对该信号进行理想采样,可以得到采样序列:(2—2)同样可以对该序列进行Z变换,其中T为采样周期(2—3)当得时候,我们就得到了序列的傅里叶变换(2—4)其中称为数字频率,它和模拟频域的关系为

2、(2—5)式中的是采样频率,上式说明数字频率是模拟频率对采样频率的归一化。同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅里叶变换称为序列的频谱。序列的傅里叶变换和对应的采样信号频谱具有下式的对应关系:(2—6)即序列的频谱是采样信号频谱的周期延拓。从式(2—6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。无限长的序列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT),这一变换可以很好的放映序列的

3、频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N时,我们定义离散傅里叶变化为:(2—7)其中,,它的反变换定义为:(2—8)根据式(2—3)和(2—7)令,则有(2—9)可以得到,是Z平面单位圆上幅角为的点,就是见单位圆进行N等分以后第K个点。所以,是变换在单位圆上的等距采样,或者说是序列傅里叶变换的等距采样。时域采样在满足Nyquist定理时,就不会发生频谱混淆;同样地,在频率域进行采样的时候,只要采样间隔足够小,也不会发生时域序列混淆。DFT时对序列傅里叶变换的等距采样,因此可以用于序列的频谱分析。在运用DFT进行频谱分析的时候可能有三种误差,分析如下:(1)混淆现象从式(

4、2—6)中可以看出,序列的频谱是采样信号频谱的周期延拓,周期是,因此当采样速率不满足Nyquist定理,即采样频率小于两倍的信号(这里指的是实信号)频率时,经过采样就会发生频谱混淆。这导致采样后的信号序列频谱不能真实的反映原信号的频谱。所以,在利用DFT分析连续信号频谱的时候,必须注意这一问题。这就告诉我们,在确定信号的采样频率之前,需要对频谱的性质有所了解。在一般的情况下,为了保证高于折叠频率的分量不会出现,在采样之前,先用低通模拟滤波器对信号进行滤波。(2)泄露现象实际中的信号序列往往很长,甚至是无线长序列。为了方便,我们往往用截短的序列来近似它们,这样可以使用较短的DFT来对信号进行

5、频谱分析。这种截短等价于给原始信号序列乘以一个矩形窗函数,而矩形窗函数的频谱不是有限带宽的,从而它和原信号的频谱进行卷积以后会扩展原信号的频谱。值得一提的是,泄漏时不能和混淆完全分离的,因为泄漏导致频谱的扩展,从而造成混淆。为了减小泄漏的影响,可以选择是党的窗函数使频谱的扩散减小到最小。(3)栅栏效应因为DFT是对单位圆上Z变换的均匀采样,所以它不可能将频谱视为一个连续函数。这样就产生了栅栏效应,从某种角度来看,用DFT来观看频谱就好像通过一个栅栏来观看一幅景象,只能在离散点上看到真实的频谱。这样的话就会有一些频谱的峰点或谷点被“栅栏”挡住,不能被我们观察到。减小栅栏效应的一个方法是在原序

6、列的末端补一些零值,从而变动DFT的点数。这种方法的实质是人为地改变了对真是频谱采样的点数和位置,相当于搬动了“栅栏”的位置,从而使得原来被挡住的一些峰点或谷点显露出来。注意,这时候每根谱线对应的频率和原来的已经不相同了。从上面的分析过程可以看出,DFT可以用于信号的频谱分析,但必须注意可能产生的误差,在应用过程中要尽可能减小和消除这些误差的影响。快速傅里叶变换FFT并不是与DFT不相同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它是对变换式(2—7)进行一次次的分解,使其成为若干小数点DFT的组合,从而减小运算量。常用的FFT是以2为基数,其长度。它的运算效率高,程序比较简单

7、,使用也十分菲娜改变。当需要进行变换的序列的长度不是2的整数次方的时候,为了使用以2为基的FFT,可以用末尾补零的方法,使其长度延长至2的整数次方。IFFT一般可以通过FFT程序来完成,比较式(2—7)和(2—8),只要对取共轭,进行FFT运算,然后再取其共轭,并乘以因子,就可以完成IFFT。三、实验内容及步骤(一)编制实验用主程序及相应子程序1、在实验之前,认真复习DFT和FFT有关的知识,阅读本实验原理与方法和实验附

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。