欢迎来到天天文库
浏览记录
ID:57616725
大小:1.83 MB
页数:51页
时间:2020-08-29
《组合数学答案.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、精品文档2.1求序列{0,1,8,27,…n3…}的母函数。Gxaaxax2ax3axn解:0123nGx0x8x227x3n3xnan3nan13n1a4a6a4aa0nn1n2n3n4左右同乘再连加:x4:a4a6a4aa043210x5:a4a6a4aa054321xn1:a4a6a4aa0n1n2n3n4n5xn:a4a6a4aa0nn1n2n3n4母函数:G3620x6x2xx143
2、2.2已知序列{,4,……,n3,……},求母函数。3331解:Q的第k项为:(kn1),对于本题,n=4,(1x)nn11母函数为:(1x)4378x2.3已知母函数G(X)=,求序列{a}13x54x2n378xAB解:G(X)==(19x)(16x)(19x)(16x)AB3A7从而有:6A9B78B474G(X)=(19x)(16x)G(X)=7(19x92x293x3)-4(1(-6)x(-6)2x2(6)3x3)1欢迎下载。精品文档a=
3、7*9n4*(6)nn2.4.已知母函数39x,求对应的序列a。1x56x2n39x39x解:母函数为G(x)1x56x2(17x)(18x)AB令G(x)17x18xA(18x)B(17x)39xAB38A+7B=9解得:A=2B=121所以G(x)2*(7x)i(8x)i17x18xi0i0a2*(7)n8nn2.5设GF,其中F是第n个Fibonacci数。证明:G3GG0,n2nnnn1n2n=2,3,4…。求{G,G,G,}的母函
4、数。012解:设H(x)GGxGx2Gx3,则0123H(x)GGxGx2Gx3Gx4……①012343xH(x)3Gx3Gx23Gx33Gx4……②0123x2H(x)Gx2Gx3Gx4……③012①-②+③,得:13xx2H(x)GGx3Gx010又已知GF,则GF0,GF1n2n0012xx所以,H(x)13xx23535(x)(x)22AB设H(x),则可列出方程组:3535xx222欢迎下载。精品文档535AB1A103
5、535,解得AB053522B10那么,ABH(x)35353535()(1x)()(1x)2222ii535535(x)(x)5252i0i053535()i()ixi522i02.6求序列{1,0,2,0,3,4,0,……}解:QG(x)=1+0*x+2*x2+0*x3+3*x4+0*x3+0*x5+4*x6+……=1+2x2+3x4+4x6+……x2G(x)=x2+2x4+3x6+……(1-x2)*G(x)=1+x2+x4+x6+……(1-x(2
6、e2a)12)*G(x)=jij1x2vvssvvvvssjjjjj1G(x)=(1x2)22.7设G12x23x44x6....(n1)x2n....求(1x2)G,(1x2)2G。G12x23x44x6....(n1)x2n....(1)题解:x2Gx22x43x64x8....(n)x2n(n1)x2n2....(2)(1)-(2)得:Gx2G1x2x4x6....(n)x2n....1x2n(1x2)G1x2(1x2)2
7、G1x2n2.8求下列序列的母函数:(1)1,0,1,0,1,0…..(2)0,-1,0,-1,0,-1…….3欢迎下载。精品文档(3)1,-1,1,-1,1,-1……1x2n题解:(1)带入母函数公式得:G(x)1x2x4x6....x2n....1x2x(1x2n)(2)带入母函数公式得:G(x)(x1x3x5....x2n1....)1x21x2n(3)有(1)和(2)相加得到:1x2.9设G=1+3x+6x2+10x3+……+C(n+2,2)xn+……证明:(1)(1-x)G=1+2x+3
8、x2+4x3+……+(n+1)xn+……(2)(1-x2)G=1+x+x2+x3+……+xn+……(3)(1x)3G=1证:QG=1+
此文档下载收益归作者所有