基于人工智能的决策支持系统.pdf

基于人工智能的决策支持系统.pdf

ID:57549511

大小:189.60 KB

页数:4页

时间:2020-08-27

基于人工智能的决策支持系统.pdf_第1页
基于人工智能的决策支持系统.pdf_第2页
基于人工智能的决策支持系统.pdf_第3页
基于人工智能的决策支持系统.pdf_第4页
资源描述:

《基于人工智能的决策支持系统.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、精品文档基于人工智能的决策支持系统的发展现状及趋势2013年12月18日智能决策支持系统作为人工智能的一个重要研究领域,允许决策者和信息经营者、资源配置者和管理者、策略规划者和装备控制者改进他们的工作效率,已经成为学术界关注的焦点,其发展前景备受世人瞩目。人工智能(ArtificialIntelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,它是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。近十年

2、来,人工智能已得到迅速传播与发展,并在决策支持系统中获得了日益广泛的应用,越来越多的决策支持系统应用了网络技术和分布式人工智能技术。决策支持系统(DSS)作为人工智能的一个重要研究领域,是辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机应用系统。它是管理信息系统(MIS)向更高一级发展而产生的先进信息管理系统。它为决策者提供分析问题、建立模型、模拟决策过程和方案的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。随着科学技术的进步以及人工智能技术的日趋成熟,决策支持系统智能化已经成为业界研究与实现的目标,尽管目前为止已有一些先进的

3、智能决策支持系统在商业、工业、政府和国防等部门获得成功应用,但是,这一系统远未完善,仍处于发展阶段,可以预见的是在未来的研究过程中,智能决策支持系统必将对社会和组织产生更加重大的影响。智能决策支持系统的工作是可预测和可规划的,它是实实在在可以造福全人类。基于人工智能的智能决策支持系统(IDSS)属于一个新兴的交叉学科领域,是运筹学、管理科学和计算机科学结合的产物,在我国许多应用领域有了初步的运用,例如税务稽查、渔业专家系统、中国工商银行风险投资决策、为电信部门进行VIP分析,等等。渔场预报系统就是CBR(基于范例的推理)一个很好的应用实例(由中科院计算所史忠植老师指导完成),

4、这个系统已被应用于中国东海渔业中心的预测;在国外IDSS也有着非常深入的研究与广泛的应用,如Hill,Holsaple等人采用神经网络、遗传算法等实现了综合(holistic)决策支持系统,系统在某种程度上体现了人类思维和决策过程的性质;在应用方面有Web和Agent的协同决策支持系统,Web的专家系统,如好莱坞经理决策支持系统。IDSS未来的的发展趋势主要有5个方面:①注重基于知识的人机交互决策支持系统强调决策过程的交互性,对人机对话系统有较高的要求,长期以来,人们对数据、信息和知识的认识仅限于数据--信息--知识的单链条关系,实际上,从数据中获得信息,再从信息中获得知识,

5、仅仅是决策过程的开始,对数据、信息和知识的1欢迎下载。精品文档关系的研究表明,对其他关系的研究对提高决策质量也具有重要意义。在如何从数据中提取信息、信息如何呈现给决策者等问题中,知识发挥着重要作用,对这些问题的研究产生了数据--知识--信息--数据的循环或网状关系等。②分布式并行化决策求解决策环境的复杂性常常会超出人的求解能力,促使研究者抛开传统的模型求解方法,转而寻求新的技术。同时技术的不断进步,尤其是IT的进步,也在为IDSS的研究提供更为有力的手段和工具。目前随着计算机网络的发展,决策环境出现了新的特点:分析、决策中使用的数据不再集中于一个物理位置,而是分散到不同的地区

6、、部门;运行在Internet/Intranet环境里的分析、决策模型及知识处理方法也从集中式处理发展为在网络环境下的分布、或分布再加上并行的处理方式。同时,决策的可行解本身也存在计算效率问题。有时候IDSS的顺序计算结构也会成为决策的瓶颈。对复杂决策问题的并行求解已得到广泛关注,分布式数据仓库、分布式决策处理的研究以及分布式人工智能技术的应用、并行决策计算等已成为新的研究热点。③注重各种相关技术的集成应用IDSS的核心是知识和知识处理%决策中用到的知识总是和特定应用领域相关,不同的领域对知识的表示和处理具有不同的特点,不同智能决策方法有其特点和适用范围,方法的综合成为提高系

7、统决策能力的重要途径。同时,决策信息来源的多样性对信息融合也提出了新的要求。如何综合来自不同方面的信息为一个决策目标服务是决策中的常见问题,经历了从简单叠加到优化的线性组合的过程,采用逻辑、线性优化、决策树和神经网络等可以实现不同层次的信息融合,目前采用证据理论、贝叶斯网络等不确定性推理技术进行信息融合也取得了一些成果。这一领域的更高目标是要寻找更为一般的知识表示和推理算法。④决策过程的理解决策过程的理解是建立智能决策支持系统的基础。目前,对人类决策过程的理解还仅限于具有明确过程性和可计算性的部分,对更

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。