资源描述:
《2019版数学人教B版选修4-4训练:1.3-1.4 曲线的极坐标方程 圆的极坐标方程 Word版含解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、1.3曲线的极坐标方程1.4圆的极坐标方程课时过关·能力提升1圆心在点(1,0),且过极点的圆的极坐标方程为()A.ρ=1B.ρ=cosθC.ρ=2cosθD.ρ=2sinθ解析:圆的直角坐标方程是(x-1)2+y2=1,将x=ρcosθ,y=ρsinθ代入上式,整理,得ρ=2cosθ,即为此圆的极坐标方程.答案:C2极坐标方程ρ2cosθ-ρ=0的直角坐标方程为()A.x2+y2=0或y=1B.x=1C.x2+y2=0或x=1D.y=1解析:∵ρ(ρcosθ-1)=0,∴ρ或ρcosθ=x=1.答案:C3在极坐标系中,与圆ρ=4cosθ相切的一条直线方程为()A.ρsinθ=4B.ρ
2、cosθ=2C.ρcosθ=4D.ρcosθ=-4解析:圆的极坐标方程化为直角坐标方程为(x-2)2+y2=4,四个选项所对应的直线方程化为直角坐标方程分别为y=4,x=2,x=4,x=-4,故选C.答案:C4极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是()A.2B解析:如图所示,两圆的圆心的极坐标分别是和这两点间的距离是答案:D5以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是()A.ρ=2co--C.ρ=2cos(θ-1)D.ρ=2sin(θ-1)解析:如图所示,设圆心C(1,1),P(ρ,θ)为圆上任意一点,过C作CD⊥OP于点D.∵
3、CO
4、=
5、CP
6、,∴
7、
8、OP
9、=2
10、DO
11、.在Rt△CDO中,∠DOC=θ-1,∴
12、DO
13、=cos(θ-1).∴
14、OP
15、=2cos(θ-1),∴ρ=2cos(θ-1).答案:C6直线的极坐标方程为限定≥0)解析:将x=ρcosθ,y=ρsinθ(ρ≥0)代入直角坐标方程得tanθ则或故极坐标方程为≥0)和θ≥0).≥0)答案:θ≥0)和θ7在极坐标系中,定点点在直线上运动当线段最短时点的极坐标是化为直角坐标为A(0,1).如图,过点A解析:将ρcosθ+ρsinθ=0化为直角坐标方程为x+y=0,点作AB⊥直线l于点B,因为△AOB为等腰直角三角形,又
16、OA
17、=1,所以
18、OB
19、∠BOx故点B的极坐标是答案:8
20、化下列曲线的极坐标方程为直角坐标方程,并判断曲线的形状.(1)ρcosθ=2;(2)ρ=6cosθ.解:(1)极坐标方程ρcosθ=2化为直角坐标方程为x=2,曲线是过点(2,0),垂直于x轴的直线.(2)∵ρ=6cosθ,∴ρ2=6ρcosθ,化为直角坐标方程为x2+y2-6x=0,即(x-3)2+y2=9.故曲线是圆心为(3,0),半径为3的圆.9圆O和圆O的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ.12(1)把圆O和圆O的极坐标方程化为直角坐标方程;12(2)求经过圆O,圆O的交点的直线的直角坐标方程.12解:以极点为原点,极轴为x轴正半轴,建立平面直角坐标系,两坐标系中
21、取相同的长度单位.(1)x=ρcosθ,y=ρsinθ,由ρ=4cosθ得ρ2=4ρcosθ,所以x2+y2-4x=0,为圆O的直角坐标方程.1同理x2+y2+4y=0为圆O的直角坐标方程.2-(2)由解得-即圆O、圆O交于点(0,0)和(2,-2),过两圆交点的直线的直角坐标方程为y=-x.12半径点在圆上运动★10在极坐标系中,已知圆C的圆心(1)求圆C的极坐标方程;(2)若点P在直线OQ上,且求动点的轨迹的极坐标方程解:(1)圆C的圆心坐标化为平面直角坐标为-化为极坐标方程为所以圆C的平面直角坐标方程为-ρ2-6ρco-(2)设点P的坐标为(ρ,θ),点Q的坐标为(ρ,θ),则由
22、题意可知因为点Q在圆C上,所以00点Q的坐标适合圆C的方程,代入得-整理得动点P的轨迹方程为ρ2-15ρco-