图论能解决的问题.doc

图论能解决的问题.doc

ID:57415787

大小:21.50 KB

页数:2页

时间:2020-08-16

图论能解决的问题.doc_第1页
图论能解决的问题.doc_第2页
资源描述:

《图论能解决的问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、图论能解决的问题:1最短路问题(SPP-shortestpathproblem)一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。2公路连接问题某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市。假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总成本最小?3指派问题(ass

2、ignmentproblem)一家公司经理准备安排名员工去完成项任务,每人一项。由于各员工的特点不同,不同的员工去完成同一项任务时所获得的回报是不同的。如何分配工作方案可以使总回报最大?4中国邮递员问题(CPP-chinesepostmanproblem)一名邮递员负责投递某个街区的邮件。如何为他(她)设计一条最短的投递路线(从邮局出发,经过投递区内每条街道至少一次,最后返回邮局)?由于这一问题是我国管梅谷教授1960年首先提出的,所以国际上称之为中国邮递员问题。5旅行商问题(TSP-travelingsalesmanproblem)一名推销员准备前往若干

3、城市推销产品。如何为他(她)设计一条最短的旅行路线(从驻地出发,经过每个城市恰好一次,最后返回驻地)?这一问题的研究历史十分悠久,通常称之为旅行商问题。6运输问题(transportationproblem)某种原材料有个产地,现在需要将原材料从产地运往个使用这些原材料的工厂。假定个产地的产量和家工厂的需要量已知,单位产品从任一产地到任一工厂的运费已知,那么如何安排运输方案可以使总运输成本最低?7.最短路已有成熟的算法:迪克斯特拉(Dijkstra)算法8.计算赋权图中各对顶点之间最短路径,显然可以调用Dijkstra算法。具体方法是:每次以不同的顶点作为

4、起点,用Dijkstra算法求出从该起点到其余顶点的最短路径,反复执行n次这样的操作,就可得到从每一个顶点到其它顶点的最短路径。这种算法的时间复杂度为O(n^3)。第二种解决这一问题的方法是由FloydRW提出的算法,称之为Floyd算法。(可以解决第一个问题)9.prim算法、Kruskal算法构造最小生成树(使所有点连通)10.匈牙利算法、Kuhn-Munkres算法解决人员分配问题11.Euler回路的Fleury算法(中国邮递员问题)12.最大流的一种算法—标号法(用标号法寻求网络中最大流的基本思想是寻找可增广轨,使网络的流量得到增加,直到最大为止

5、。)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。