哈工大理论力学课件第十三章.ppt

哈工大理论力学课件第十三章.ppt

ID:57391632

大小:2.90 MB

页数:83页

时间:2020-08-15

哈工大理论力学课件第十三章.ppt_第1页
哈工大理论力学课件第十三章.ppt_第2页
哈工大理论力学课件第十三章.ppt_第3页
哈工大理论力学课件第十三章.ppt_第4页
哈工大理论力学课件第十三章.ppt_第5页
资源描述:

《哈工大理论力学课件第十三章.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十三章动能定理功是代数量§13-1力的功一、常力在直线运动中的功单位J(焦耳)1J=1N·m元功二、变力在曲线运动中的功记力在路程上的功为1、重力的功质点系由重力的功只与始、末位置有关,与路径无关。得三、几种常见力的功质点2、弹性力的功弹簧刚度系数k(N/m)弹性力弹性力的功为因式中得即弹性力的功也与路径无关3.定轴转动刚物体上作用力的功则若常量由从角转动到角过程中力的功为作用在点的力的元功为力系全部力的元功之和为4.平面运动刚体上力系的功其中由两端乘dt,有其中:为力系主失,为力系对质心的主矩.当质心由,转角由时,力系的功为即:平面运动刚体上力系的功,等于刚体上所受各力作功的

2、代数和,也等于力系向质心简化所得的力和力偶作功之和.说明:1、对任何运动的刚体,上述结论都适用;2、C点不是质心,而是刚体上任意一点时,上述结论也成立;3、计算力系的主矢、主矩时,可以不包含不作功的力。已知:均质圆盘R,m,F=常量,且很大,使O向右运动,f,初静止。求:O走过S路程时力的功。1、摩擦力Fd的功S是力在空间的位移,不是受力作用点的位移.解:不作功的力可不考虑,因此亦可如下计算:2、可将力系向点O简化,即§13-2质点和质点系的动能2、质点系的动能1、质点的动能单位:J(焦耳)(1)平移刚体的动能(2)定轴转动刚体的动能即即即:平面运动刚体的动能等于随质心平移的动能

3、与绕质心转动的动能之和.得速度瞬心为P(3)平面运动刚体的动能上面结论也适用于刚体的任意运动.将两端点乘,由于§13-3动能定理1、质点的动能定理因此得质点动能定理的微分形式,即质点动能的增量等于作用在质点上力的元功。质点动能定理的积分形式:在质点运动的某个过程中,质点动能的改变量等于作用于质点的力作的功.积分之,有2、质点系的动能定理质点系动能定理的微分形式:质点系动能的增量,等于作用于质点系全部力所作的元功的和.由求和得质点系动能定理的积分形式:质点系在某一段运动过程中,起点和终点的动能改变量,等于作用于质点系的全部力在这段过程中所作功的和.积分之,有3、理想约束光滑固定面、

4、固定铰支座、光滑铰链、不可伸长的柔索等约束的约束力作功等于零.称约束力作功等于零的约束为理想约束.对理想约束,在动能定理中只计入主动力的功即可.内力作功之和不一定等于零.当轮子在固定面只滚不滑时,接触处是否为理想约束?思考:已知:m,h,k,其它质量不计.求:例13-1解:已知:轮O:R1,m1,质量分布在轮缘上;均质轮C:R2,m2,纯滚动,初始静止;θ,M为常力偶。求:轮心C走过路程S时的速度和加速度例13-2轮C与轮O共同作为一个质点系解:式(a)是函数关系式,两端对t求导,得求:冲断试件需用的能量。已知:冲击试验机m=18kg,l=840mm,杆重不计,在时静止释放,冲断

5、试件后摆至例13-3得冲断试件需要的能量为解:已知:均质圆盘R,m,F=常量,且很大,使O向右运动,f,初静止。例13-4求:O走过S路程时ω,。圆盘速度瞬心为C,解:将式(a)两端对t求导,并利用得已知:,均质;杆m均质,=l,M=常量,纯滚动,处于水平面内,初始静止.例13-5求:转过φ角的研究整个系统解:式(a)对任何φ均成立,是函数关系,求导得注意:轮Ⅰ、Ⅱ接触点C是理想约束,其摩擦力Fs尽管在空间是移动的,但作用于速度瞬心,故不作功.已知:均质杆OB=AB=l,m在铅垂面内;M=常量,初始静止,不计摩擦.求:当A运动到O点时,例13-6解:§13-4功率、功率方程、机械

6、效率1、功率:单位时间力所作的功.即:功率等于切向力与力作用点速度的乘积.由,得作用在转动刚体上的力的功率为单位W(瓦特),1W=1J/S2、功率方程功率方程:即质点系动能对时间的一阶导数,等于作用于质点系的所有力的功率的代数和.或机床3、机械效率机械效率有效功率多级传动系统例13-7求:切削力F的最大值。已知:解:当时已知:m,l0,k,R,J。求:系统的运动微分方程。例13-8:解:令为弹簧静伸长,即mg=k,以平衡位置为原点§13-5势力场.势能.机械能守恒定律1.势力场势力场(保守力场):力的功只与力作用点的始、末位置有关,与路径无关.力场:一物体在空间任一位置都受到一个

7、大小和方向完全由所在位置确定的力的作用.势力场中,物体所受的力为有势力.2.势能在势力场中,质点从点M运动到任意位置M0,有势力所作的功为质点在点M相对于M0的势能.(1)重力场中的势能(2)弹性力场的势能称势能零点(3)万有引力场中的势能取零势能点在无穷远质点系重力场(4)质点系受到多个有势力作用质点系的零势能位置:各质点都处于其零势能点的一组位置.质点系的势能:质点系从某位置到其零势能位置的运动过程中,各有势力做功的代数和为此质点系在该位置的势能.已知:均质杆l,m,弹簧刚度

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。