角平分线的性质与判定幻灯片课件.ppt

角平分线的性质与判定幻灯片课件.ppt

ID:57327257

大小:910.50 KB

页数:30页

时间:2020-08-12

角平分线的性质与判定幻灯片课件.ppt_第1页
角平分线的性质与判定幻灯片课件.ppt_第2页
角平分线的性质与判定幻灯片课件.ppt_第3页
角平分线的性质与判定幻灯片课件.ppt_第4页
角平分线的性质与判定幻灯片课件.ppt_第5页
资源描述:

《角平分线的性质与判定幻灯片课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4角平分线的性质与判定ADBCE杨平不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?AOBC活动1再打开纸片,看看折痕与这个角有何关系?(对折)情境问题2、证明:在△ACD和△ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)ADBCE根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)OABCE探究新知活动3NOMCENM2.分别以M,N为圆心.大于MN的长为半径作弧.两弧在∠AOB的内部交于C.演示如何用尺规作角的平分

2、线?ABOMNC作法:1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N.3.作射线OC.则射线OC即为所求.探究角平分线的性质(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?活动4(2)猜想:角的平分线上的点到角的两边的距离相等.题设:一个点在一个角的平分线上结论:它到角的两边的距离相等证明:∵OC平分∠AOB(已知)∴∠1=∠2(角平分线的定义)∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO=90°(垂直的定义)在△PDO和△PEO中∠PDO=∠PEO(已证)∠1=∠2(已证)OP=OP(

3、公共边)∴△PDO≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)PAOBCED12已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E求证:PD=PE探究角平分线的性质活动4(3)验证猜想角平分线上的点到角两边的距离相等。(4)得到角平分线的性质:活动4利用此性质怎样书写推理过程?∵∠1=∠2,PD⊥OA,PE⊥OB(已知)∴PD=PE(全等三角形的对应边相等)PAOBCED12∵如图,AD平分∠BAC(已知)∴=,()在角的平分线上的点到这个角的两边的距离相等。BDCD(×)判断:练习∵如图,DC⊥AC,DB⊥AB(已知)∴=,()在角的平分线

4、上的点到这个角的两边的距离相等。BDCD(×)∵AD平分∠BAC,DC⊥AC,DB⊥AB(已知)∴=,()DBDC在角的平分线上的点到这个角的两边的距离相等。√不必再证全等,OABED思考:如图所示OC是∠AOB的平分线,P是OC上任意一点,问PE=PD?为什么?CPPD,PE没有垂直OA,OB,它们不是角平分线上任一点这个角两边的距离,所以不一定相等思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)SO公路铁路活动5如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;

5、求证:CF=EBACDEBF实践应用分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.现已有一个条件BD=DF(斜边相等),还需要我们找什么条件DC=DE(因为角的平分线的性质)再用HL证明.试试自己写证明。你一定行!做一做驶向胜利的彼岸已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.BAEDCF例已知:如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.证明

6、:过点P作PD、PE、PF分别垂直于AB、BC、CA,垂足为D、E、F∵BM是△ABC的角平分线,点P在BM上(已知)∴PD=PE(在角平分线上的点到角的两边的距离相等)同理PE=PF.∴PD=PE=PF.即点P到边AB、BC、CA的距离相等DEFABCPMN变式:如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P.求证:点P到三边AB,BC,CA所在直线的距离相等.ABCDEPFGHBP小结与作业一、过程小结:情境→观察→作图→应用→探究→再应用二、知识小结:本节课学习了那些知识?有哪些运用?你学了吗?做了吗?用了吗?回味无穷定理角平分线上的点到这个角的两边距

7、离相等.∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.小结拓展OCB1A2PDE到一个角的两边的距离相等的点,在这个角平分线上。已知:PD⊥OA,PE⊥OB,垂足分别是D、E,PD=PE.求证:点P在∠AOB的平分线上。角平分线的判定定理AOBPDEC用符号语言表示为:∵PD=PEPD⊥OA,PE⊥OB∴∠1=∠2.由上面两个定理可知:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。