欢迎来到天天文库
浏览记录
ID:57295259
大小:2.80 MB
页数:56页
时间:2020-08-10
《复变函数泛函分析课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、泛函分析大家以前多学过一些数学方面的课程,比如分析方面的数学分析、实(复)变函数等等,都是归并于经典分析,其思想是:如果某个量难以被直接了解,那就将它放到某个变化过程中去考虑,产生了变量、函数、极限、连续、微分和积分等基本概念。类似的,如果对某个变量(如函数)本身难以被直接了解,那能否转而研究一族变动的变量(如函数空间),然后通过施以变量一定的运算和极限,获得有关原变量的知识?国内泛函分析方向的数学大师南京大学曾远荣(1903~1994)是我国泛函分析的鼻祖,后转入计算数学.在西南联大期间,关,田,江和徐利治,杨振宁都听过课中科院数学研究所:关肇
2、直(1919.2.13-1982.11.12)田方增(1915-)吉林大学江泽坚(1921—2005)复旦大学夏道行(1930-)山大毕业,严绍宗复旦毕业泛函分析泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的数学分支,用的统一的观点把古典分析的基本概念和方法一般化,运用代数学、几何学等学科的观点和方法研究分析学的课题,可以看作无限维的分析学。今天,它的观点和方法已经渗入到不少工程技术的学科中,起着重要的作用,已成为近代分析的基础之一。泛函分析的最基本的内容:三个空间,四个定理选择公理与Zorn引理泛函分析的研究必须首先
3、承认一些事情选择公理:设C为一个由非空集合所组成的集合,那么,我们可以从每一个在C中的集合中,都选择一个元素和其所在的集合配成有序对来组成一个新的集合。Zorn引理:设(P,>)是偏序集,若P的每一个全序子集在P中都有上界,则P必有极大元良序原理:所有集合能被良序化。换句话说,对每一个集合来说,都存在一种排序方法,使得它的所有子集都有极小元素Zorn引理是集论的一个重要工具,与选择公理,良序原理都是彼此等价的,主要应用于数学上存在性定理的证明,而不具体描述寻求的方法。基本空间和基本定理距离空间(度量空间)线性赋范空间、Banach空间内积空间、H
4、ilbert空间例子以出租车距离定义的平面距离空间;序列空间函数空间C[a,b];离散距离空间;R上函数
5、x-y
6、^2;
7、x-y
8、^1/2是距离吗?Hamming距离:X为所有0和1构成的三元序组所构成的集合(总数为8),元素x,y的距离是x,y中不同的对应分量的个数。在开关和自动化理论以及编码理论中都有重要的应用。注:Cauchy序列一定是有界序列,如果有收敛的子列,那么Cauchy序列必是收敛的例子实直线、复平面都是可分的完备的距离空间离散距离空间X是可分的当且仅当X是可数集L^p[a,b](p>1)在上面定义的距离意义下都是完备的、可分的不
9、可分距离空间,例如有界序列空间(利用[0,1]中点是不可数多个)C[a,b]按L^1距离就不是完备的,它的完备化空间是L^1(存在连续函数序列,L^1收敛到不连续的可积函数)有理数点构成的距离空间也不完备例:线性代数Ax=b均可写成x=Cx+D,如果矩阵C满足条件
10、C
11、<1,则该方程有唯一解,且可以由迭代求得练习:利用压缩映像原理证明方程x=asinx只有唯一解x=0,其中012、g(x)作为解。其中动态控制系统状态轨线的存在性和唯一性控制论中,确定性动态控制系统可以用如下常微分方程来描述x(t)表示时间段T上系统的状态轨线(函数),是n维的向量函数,u(t)是控制输入函数,都视为距离空间中的点。上式等价于如下形式的积分方程:定理:对由上式所描述的系统,假设T是有界区间,是连续的,即注:只要常微分方程满足定理条件,就可以利用数值积分和迭代算法来求方程的近似解(Picard逐次逼近法)定理3(Picard)设是矩形上的二元连续函数,设,又在D上关于x满足Lipschitz条件,即存在常数K,使对任意的,有,那么方程在区间上有13、唯一的满足初值条件的连续函数解,其中压缩映射原理不仅证明了方程解的存在性和唯一性,而且也提供了求解的方法——逐次逼近法,即只要任取,令,则解。如果在(3)中,令,则有(4)(4)式给出了用逼近解x的误差估计式。内积的性质:有界线性算子空间开映射定理定义:设X,Y是赋范线性空间,T是X到Y的映射,将X中的开集A映为Y中开集T(A),则称映射T是开的线性算子的连续性赋范线性空间上的有界线性算子T的逆映射是否连续?与函数情形是不同的例:同胚映射T是双射时,T是开映射当且仅当其逆映射是连续的例:求积分、微分是互逆的过程,积分算子的有界性并保证不了微分算子14、是无界的线性算子。逆算子定理闭图像定理共鸣定理及其应用共鸣定理(一致有界原理)共鸣定理的应用1.机械求积公式的收敛性2.Lagrange
12、g(x)作为解。其中动态控制系统状态轨线的存在性和唯一性控制论中,确定性动态控制系统可以用如下常微分方程来描述x(t)表示时间段T上系统的状态轨线(函数),是n维的向量函数,u(t)是控制输入函数,都视为距离空间中的点。上式等价于如下形式的积分方程:定理:对由上式所描述的系统,假设T是有界区间,是连续的,即注:只要常微分方程满足定理条件,就可以利用数值积分和迭代算法来求方程的近似解(Picard逐次逼近法)定理3(Picard)设是矩形上的二元连续函数,设,又在D上关于x满足Lipschitz条件,即存在常数K,使对任意的,有,那么方程在区间上有
13、唯一的满足初值条件的连续函数解,其中压缩映射原理不仅证明了方程解的存在性和唯一性,而且也提供了求解的方法——逐次逼近法,即只要任取,令,则解。如果在(3)中,令,则有(4)(4)式给出了用逼近解x的误差估计式。内积的性质:有界线性算子空间开映射定理定义:设X,Y是赋范线性空间,T是X到Y的映射,将X中的开集A映为Y中开集T(A),则称映射T是开的线性算子的连续性赋范线性空间上的有界线性算子T的逆映射是否连续?与函数情形是不同的例:同胚映射T是双射时,T是开映射当且仅当其逆映射是连续的例:求积分、微分是互逆的过程,积分算子的有界性并保证不了微分算子
14、是无界的线性算子。逆算子定理闭图像定理共鸣定理及其应用共鸣定理(一致有界原理)共鸣定理的应用1.机械求积公式的收敛性2.Lagrange
此文档下载收益归作者所有