欢迎来到天天文库
浏览记录
ID:57265947
大小:612.50 KB
页数:15页
时间:2020-08-08
《《单调性与最大(小)值》教程文件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3.1单调性与最大(小)值问题1画出f(x)=x的图像,并观察其图像。2、在区间________上,随着x的增大,f(x)的值随着______.o5-5-55f(x)=x1、从左至右图象上升还是下降____?上升增大函数单调性的概念:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在
2、区间D上是减函数,如图2.yx0x1x2f(x1)f(x2)y=f(x)图1yx0x1x2f(x1)f(x2)y=f(x)图2如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.函数的单调性定义用定义证明函数单调性的步骤是:(1)取值(2)作差变形(3)定号(4)判断根据单调性的定义得结论即取是该区间内的任意两个值且即求,通过因式分解、配方、有理化等方法即根据给定的区间和的符号的确定的符号例2求证:函数在区间上是单调增函数.,则证明:在区间(0,+∞)上任取两个值且又因为,,所以说即函数在区间(0,+∞
3、)上是单调增函数.若把区间改为,结论变化吗?思考若把函数改为结论变化吗?函数f(x)=1/x在(0,+∞)上是减函数.f(x1)-f(x2)=由于x1,x2得x1x2>0,又由x10所以f(x1)-f(x2)>0,即f(x1)>f(x2).证明:(1)在区间(0,+∞)上,设x1,x2是(0,+∞)上任意两个实数,且x14、标叫什么呢?思考知识要点M是函数y=f(x)的最大值(maximumvalue):一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在,使得.一般地,设函数y=f(x)的定义域为I,如果实数M满足:(1)对于任意的的x∈I,都有f(x)≥M;(2)存在,使得,那么我们称M是函数y=f(x)的最小值(minimunvalue).能否仿照函数的最大值的定义,给出函数y=f(x)的最小值的定义呢?思考课堂小结2、函数单调性的定义;3、证明函数单调性的步骤;1、单调函数的图象特征;4、函数的最值:最大值最小值谢谢!
4、标叫什么呢?思考知识要点M是函数y=f(x)的最大值(maximumvalue):一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在,使得.一般地,设函数y=f(x)的定义域为I,如果实数M满足:(1)对于任意的的x∈I,都有f(x)≥M;(2)存在,使得,那么我们称M是函数y=f(x)的最小值(minimunvalue).能否仿照函数的最大值的定义,给出函数y=f(x)的最小值的定义呢?思考课堂小结2、函数单调性的定义;3、证明函数单调性的步骤;1、单调函数的图象特征;4、函数的最值:最大值最小值谢谢!
此文档下载收益归作者所有