数学建模人力资源安排问题.doc

数学建模人力资源安排问题.doc

ID:57244050

大小:165.00 KB

页数:11页

时间:2020-08-07

数学建模人力资源安排问题.doc_第1页
数学建模人力资源安排问题.doc_第2页
数学建模人力资源安排问题.doc_第3页
数学建模人力资源安排问题.doc_第4页
数学建模人力资源安排问题.doc_第5页
资源描述:

《数学建模人力资源安排问题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、一.问题重述本题目是一个关于创设最佳方案来实现最佳人力资源分配以求公司最大收益。目前公司接了四个工程项目,其中两项是A、B两地的施工现场监视,另两项是C、D两地的工程设计,工作主要办公室完成。公司人员结构、工资及收费情况见下表。表1公司的人员结构及工资情况高级工程师工程师助理工程师技术员人数日工资(元)925017200101705110由于工作难易程度不同对技术人员收费不一样具体见表表2不同项目和各种人员的收费标准高级工程师工程师助理工程师技术员收费(元/天)ABCD100015001300100080080090080060070070070

2、0500600400500同时为保证工程质量,专业人员必须满足客户要求表3:各项目对专业技术人员结构的要求ABCD高级工程师工程师助理工程师技术员总计1~3≥2≥2≥1≤102~5≥2≥2≥3≤162≥2≥2≥1≤111~22~8≥1--≤18另外:1、项目D,由于技术要求较高,人员配备必须是助理工程师以上,技术员不能参加;2、高级工程师相对稀缺,而且是质量保证的关键,因此,各项目客户对高级工程师的配备有不能少于一定数目的限制。各项目对其他专业人员也有不同的限制或要求;各项目客户对总人数都有限制;3、由于C、D两项目是在办公室完成,所以每人每天有

3、50元的管理费开支。4、4个项目总共同时最多需要的人数是10+16+11+18=55,多于公司现有人数41。二.模型假设1.假设这四个项目每天都在开工,不存在停工的项目2.假设每个技术人员每天都能工作3.C,D两个项目的管理费开支有该公司承担三.符号说明以下是对各个技术员工分配人数情况进行设定。ABCD高级工程师x1x2x3x4工程师y1y2y3y4助理工程师m1m2m3m4技术员n1n2n3n4W表示该公司每天的直接收益F表示调派过程中除去固定部分后的利润H表示各项目所需固定人员每天的直接利益C为各公司各技术人员每天的直接收费[扣除工资和管理开

4、支后的收费],i=1时表示高级工程师的直接受费,i=2时为工程师的每天的直接收费,i=3时为助理工程师每天的直接收费,i=4时为技术员的每天的直接收费。j=1表示A项目,j=2表示B项目,j=3表示C项目,j=4表示D项目。四.问题分析在各个项目中,客户对不同的技术人员结构都有最低要求,其对应利润是固定的,在调派过程中除去固定部分后的最大利润对应着总的最大利润。由表3可推知各项目所需固定专业技术人员和剩余人员表(4)ABCD剩余人员高级工程师12213工程师22229助理工程师22213技术人员13100可以得到对应的每天固定部分直接收益,公司每

5、天所得直接最大收益等于每天固定收益与剩余专业技术人员为公司获得每天的最大直接收益之和。每天固定收益不变,我们以剩余专业技术人员为公司获得每天的最大直接收益为目标函数,以每个项目队专业技术人员机构的要求和公司现有的剩余人员结构为约束条件建立规划模型,运用lingo软件求解,得出最优人员分配方案。五.模型的建立模型的建立主要分为以下几个步骤:1).该模型的核心是合理分配人力资源,使公司每天的直接受益最大化。该公司的总收入来自客户对各个专业人员的支付。而公司的支出有两项,四种专业人员的日工资和若在C、D两项目工作的办公室管理费用。所以公司的总日收益是总

6、收入减去总支出。由题中的表1和表2中的数据以及办公室管理费用可得表5:高级工程师工程师助理工程师技术员项目日利润(元/天)A750600430390B1250600530490C1000650480240D700550480340由表4和表5可得:H=750*1+1250*2+1000*2+700*1+600*2+600*2+650*2+550*2+430*2+530*2+480*2+480*1+390*1+490*3+240*1+340*0=162102).由表3和表5所给条件可将各项目对专业技术人员结构的要求以及人员结构进行简化可得调派部分不

7、同项目对专业技术人员分配要求和剩余人员结构表6ABCD剩余高级工程师0-20-300-13工程师>=0>=0>=00-69助理工程师>=0>=0>=0>=03技术员00000需求<=4<=7<=4<=143).MaxW=H+maxFmaxF=()该题中目标函数为maxF=()约束条件为:(1)由于要满足该公司人员结构要求,则有<=3(该公司剩余可供分配的高级工程师不超过3人)<=9(该公司剩余可供分配的工程师不超过9人)(该公司剩余可供分配的助理工程师不超过3人)=0(该公司已无剩余可供分配的技术员)(2)项目A对专业技术人员结构的要求,则有0<

8、=x1<=2(A项目对高级工程师的要求)0<=y1(A项目对工程师的要求)0<=m1(A项目对助理工程师的要求)0<=n1(A项目对技术

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。