大体积混凝土温度裂缝裂缝控制.doc

大体积混凝土温度裂缝裂缝控制.doc

ID:57210979

大小:35.00 KB

页数:12页

时间:2020-08-06

大体积混凝土温度裂缝裂缝控制.doc_第1页
大体积混凝土温度裂缝裂缝控制.doc_第2页
大体积混凝土温度裂缝裂缝控制.doc_第3页
大体积混凝土温度裂缝裂缝控制.doc_第4页
大体积混凝土温度裂缝裂缝控制.doc_第5页
资源描述:

《大体积混凝土温度裂缝裂缝控制.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、大体积混凝土温度裂缝裂缝控制首先分析大体积混凝土温度裂缝的成因,然后提出温度裂缝控制方法,包括设计、施工、监测等三个方面。随着我国经济的发展,工程建设规模的不断扩大,大体积混凝土在结构中的应用越来越广泛,施工中的大体积混凝土温度裂缝问题日显突出,并成为具有相当普遍性的问题。温度裂缝作为长期困扰大体积混凝土的主要难题,涉及到建筑材料、设计、施工和管理等多方面的因素。有关规范中关于土木工程的温度裂缝控制条款还不完善,工程中的温度控制实施主要依靠实践经验,缺乏理论依据。本文对大体积混凝土的温度裂缝及其控制技术进行了探讨。一、大体积混凝土浇筑温度裂缝产生的原因结构物在

2、实际使用中承受各种荷载,当结构的抗拉强度不足以抵抗荷载作用时,结构就可能出现裂缝。外荷载的直接应力和次应力、温度变化、缩胀以及不均匀沉降等都会产生裂缝。大体积混凝土常见的质量问题是混凝土结构产生裂缝。造成结构裂缝的原因是复杂的,综合性的。但是,大体积混凝土从浇筑时起,到达到设计强度止,即施工期间产生的结构裂缝主要是由水泥水化热引起的温度变化造成的。大体积混凝土工程,水泥用量多,结构截面大,因此,混凝土浇筑以后,水泥放出大量水化热,混凝土温度升高。由于混凝土导热不良,体积过大,相对散热较小,混凝土内部水化热积聚不易散发,外部则散热较快。升温阶段,混凝土表面温度总

3、是低于内部温度。依据热胀冷缩的原理,中心部分混凝土膨胀的速度要比表面混凝土快,中心部分与表面质点间形成相互约束,中心属于约束膨胀,不会开裂;表面属于约束收缩,当表面拉应力超过混凝土的极限抗拉强度时,混凝土表面就产生裂缝。随着水泥水化反应的减慢及混凝土的不断散热,大体积混凝土由升温阶段过渡到降温阶段,温度降低,体积收缩。由于混凝土内部热量是通过表面向外散发,降温阶段,混凝土表面温度与中心温度仍然存在差值,如果过大,同升温阶段一样产生表面裂缝。降温过程,混凝土体积收缩,同时,考虑到边界条件和地基的约束,属于约束收缩。但此时,混凝土龄期增长,强度增大,弹性模量增高,

4、因此,降温收缩产生的拉应力较大,除了抵消升温时产生的压应力外,在混凝土中形成了较高的拉应力,超过混凝土的抗拉强度关,就引起大体积混凝土的贯穿裂缝。水泥水化硬化,水是必备的前提条件,但混凝土为了满足施工和易性的要求,通常所加水量是水泥水化所需水量的数倍,多余的水为游离水,游离水容易蒸发,引起体积收缩。干缩与混凝土降温产生的冷缩叠加,增大了混凝土中的拉应力,加剧了混凝土中裂缝的产生。二、大体积混凝土温度裂缝控制方法在大体积混凝土工程施工中,由于水泥水化热引起混凝土内部温度和温度应力剧烈变化,从而导致混凝土发生裂缝。因此,控制混凝土浇筑块体因水化热引起的温升、混凝土

5、块体的内外温差及降温速度,是防止混凝土出现有害温度裂缝的关键。自上世纪初开始,有关大体积混凝土防裂问题就得到研究。美国通过箭石坝、胡佛坝等大坝的建设对大体积混凝土进行了全面的研究,在上世纪60年代就得到了一套比较定型的大体积混凝土设计、施工模式。即①采用低热水泥或一部分用活性掺合料;②降低水泥含量以减少总的水化热量;③限制浇筑层厚度和最短的浇筑间歇期;④采用人工冷却混凝土组成材料的方法来降低混凝土的浇筑温度;⑤在混凝土浇筑以后,采用预埋冷却水管,通循环水来降低混凝土的水化热温升;⑥保护新浇混凝土的暴露面,以防止突然的降温,在极端寒冷地区,掩盖在棚内进行人工加热

6、。在酷热季节,采用棚盖来防止新浇混凝土暴露面避免日光直射,并同时用喷雾的办法来防止混凝土过早的凝结和干燥,要求在各种条件下,混凝土的养护至少在14d以上,此外,还采用浇筑层厚与间歇期随不同浇筑温度而变化的浇筑办法。前苏联在1977年修建托克托古尔电站也形成发展了一套行之有效的大体积混凝土温控防裂措施,即托克托古尔法。我国在修建丹江口工程时,提出了防裂措施,一是严格控制基础允许温差,新老混凝土上下层温差和内外温差;三是严格执行新浇混凝土的表面保护;三是提高混凝土的抗裂能力。由水利工程中总结出来的大体积混凝土温度裂缝控制方法和措施在建筑工程实践中也得到应用,取得了

7、很好的效果。根据这些工程实践,可以看到建筑工程中大体积混凝土的温度裂缝控制要在设计、施工和检测三个方面采取一系列的技术措施。设计控制措施尽可能选用强度等级低的混凝土,充分利用后期强度。随着高层建筑和超高层建筑的不断出现,大体积混凝土的强度日益增大,出现C40-C50等高强混凝土,设计强度过高,水泥用量大,水化热量高。而高层建筑的建设周期长,在混凝土的早龄期,荷载远未达到设计荷载值,可以利用混凝土的60d或90d后期强度,这样可以减少混凝土中的水泥用量,以降低混凝土浇筑块体的温度升高。采用降低水泥用量的方法来降低混凝土的绝对温升值,可以使混凝土浇筑后的内外温差和

8、降温速度控制的难度降低,也可降低保温养

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。