欢迎来到天天文库
浏览记录
ID:57189571
大小:847.50 KB
页数:6页
时间:2020-08-05
《高中数学函数复习主要知识点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射2、函数:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B
2、为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)
3、x∈A}叫做函数的值域.构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;2求函数定
4、义域的两个难点问题(1)(2)三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。主要是
5、含绝对值函数1.(直接法)3.(换元法)4.(Δ法)6.(分离常数法)①四.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。如果对于任意∈A,都有,则称y=f(x)为奇函数。2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称, y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3
6、.奇偶性的判断①看定义域是否关于原点对称 ②看f(x)与f(-x)的关系五、函数的单调性一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),则f(x)在区间D上是减函数。2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。六、对称性:我们知道:偶函数关
7、于y(即x=0)轴对称,偶函数有关系式奇函数关于(0,0)对称,奇函数有关系式上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数关于对称也可以写成或简证:设点在上,通过可知,,即点上,而点与点关于x=a对称。得证。若写成:,函数关于直线对称(2)函数关于点对称或简证:设点在上,即,通过可知,,所以,所以点也在上,而点与关于对称。得证。若写成:,函数关于点对称(3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线
8、c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。七.函数的周期性:1.(定义)若是周期函数,T是它的一个周期。说明:nT也是的周期2.(推广)若,则是周期函数,是它的一个周期(1)函数满足如下关系系,则A、B、C、或(等式右边加负号亦成立)D、其他情形(2)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数”(3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以
9、上)如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为(以上)(4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。八、反函数1.只有单调的函数才有反函数;反函数的定义域和值域分别为原函数的值域和定义域;2、求反函数的步骤(1)解(2)换(3)写定义域。3、关于反函数的性质(1)y=f(x)和y=f-1(x)的图象关于直线y=x对称;(2)y=f(x)和y=f-1(x)具有相同的单调性;(3)
此文档下载收益归作者所有