欢迎来到天天文库
浏览记录
ID:57113788
大小:1.97 MB
页数:64页
时间:2020-07-31
《大学电路课件-4剖析.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第4章电路定理(CircuitTheorems)4.1叠加定理(SuperpositionTheorem)4.2替代定理(SubstitutionTheorem)4.3戴维宁定理和诺顿定理(Thevenin-NortonTheorem)4.5特勒根定理(Tellegen’sTheorem)4.6互易定理(ReciprocityTheorem)4.7对偶原理(DualPrinciple)下页返回4.4最大功率传输定理重点:掌握各定理的内容、适用范围及如何应用。下页上页返回1.叠加定理在线性电路中,任一支路的电流(或电压)可以看成是电路中每一个独立电源单独作用于电路时,在该支路产生
2、的电流(或电压)的代数和。4.1叠加定理(SuperpositionTheorem)2.定理的证明G1is1G2us2G3us3i2i3+–+–1用结点法:(G2+G3)un1=iS1+G2us2+G3us3下页上页返回R1is1R2us2R3us3i2i3+–+–1或表示为:支路电流为:下页上页返回结点电压和支路电流均为各电源的一次函数,均可看成各独立电源单独作用时,产生的响应之叠加。结论3.几点说明1.叠加定理只适用于线性电路。2.一个电源作用,其余电源为零电压源为零—短路。电流源为零—开路。R1is1R2us2R3us3i2i3+–+–1三个电源共同作用R1is1R2R3
3、1is1单独作用=下页上页返回+us2单独作用us3单独作用+R1R2us2R3+–1R1R2us3R3+–13.功率不能叠加(功率为电压和电流的乘积,为电源的二次函数)。4.u,i叠加时要注意各分量的参考方向。5.含受控源(线性)电路亦可用叠加,但只适用于独立源,受控源不参与叠加,且始终保留。下页上页返回4.叠加定理的应用例1求电压U.812V3A+–632+-U83A632+-U(2)812V+–632+-U(1)画出分电路图+12V电源作用:3A电源作用:解下页上页返回例2+-10V2A+-u2332求电流源的电压和发出的功率+-10V+-
4、U(1)23322A+-U(2)2332+画出分电路图为两个简单电路10V电源作用:2A电源作用:下页上页返回例3u+-12V2A+-13A366V+-计算电压u。画出分电路图13A36+-u(1)++-12V2A+-1366V+-u(2)i(2)说明:叠加方式是任意的,可以一次一个独立源单独作用,也可以一次几个独立源同时作用,取决于使分析计算简便。3A电流源作用:其余电源作用:下页上页返回例4计算电压u电流i。画出分电路图u(1)+-10V2i(1)+-12+-i(1)+u+-10V2i+-1i2+-5Au(2)2i(2)+-1i(
5、2)2+-5A受控源始终保留10V电源作用:5A电源作用:下页上页返回例5无源线性网络uSi-+iS封装好的电路如图,已知下列实验数据:解根据叠加定理,有:代入实验数据,得:研究激励和响应关系的实验方法下页上页返回例6.采用倒推法:设i'=1A。则求电流i。RL=2R1=1R2=1us=51V+–2V2A+–3V+–8V+–21V+–us'=34V3A8A21A5A13AiR1R1R1R2RL+–usR2R2i'=1A解5.齐性原理(homogeneityproperty)下页上页返回齐性原理线性电路中,所有激励(独立源)都增大(或减小)同样的倍数,则电路中响应(电压或
6、电流)也增大(或减小)同样的倍数。当激励只有一个时,则响应与激励成正比。可加性(additivityproperty)。下页上页返回4.2替代定理(SubstitutionTheorem)对于给定的任意一个电路,若某一支路电压为uk、电流为ik,那么这条支路就可以用一个电压等于uk的独立电压源,或者用一个电流等于ik的独立电流源,或用一R=uk/ik的电阻来替代,替代后电路中全部电压和电流均保持原有值(解答唯一)。ik1.替代定理支路kik+–uk+–ukik+–ukR=uk/ik下页上页返回Aik+–uk支路kA+–ukukukuk-++-Aik+–uk支路k证毕!2.定理的
7、证明=下页上页返回例求图示电路的支路电压和电流。+-i31055110V10i2i1+-u解替代+-i31055110Vi2i1+-60V替代以后有:替代后各支路电压和电流完全不变。下页上页返回替代前后KCL,KVL关系相同,其余支路的u、i关系不变。用uk替代后,其余支路电压不变(KVL),其余支路电流也不变,故第k条支路ik也不变(KCL)。用ik替代后,其余支路电流不变(KCL),其余支路电压不变,故第k条支路uk也不变(KVL)。原因注:1.替代定理既适用于线性电路,也
此文档下载收益归作者所有