新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx

新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx

ID:57108157

大小:67.56 KB

页数:10页

时间:2020-08-01

新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx_第1页
新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx_第2页
新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx_第3页
新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx_第4页
新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx_第5页
资源描述:

《新高三一轮复习数学(理)北师大版衔接教材·假期作业7 三角函数的图象与性质(解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、考点07三角函数的图象与性质1.为了得到函数g(x)=sinx的图象,需将函数f(x)=sin(π6-x)的图象(  )A.向左平移π6个单位长度B.向右平移π6个单位长度C.向左平移5π6个单位长度D.向右平移5π6个单位长度【答案】D【解析】因为f(x)=sin(π6-x)=﹣sin(x-π6)=sin(x-π6+π)=sin(x+5π6);所以把函数f(x)=sin(π6-x)的图象向右平移5π6个单位长度得到函数g(x)=sinx的图象;故选D.2.已知函数f(x)=sin(ωx+φ)﹣cos(ωx+φ)(ω>

2、0,

3、φ

4、<π2)的图象向右平移π3个单位长度得到函数g(x)的图象,若函数g(x)的最小正周期为π,x=π3为函数g(x)的一条对称轴,则函数g(x)的一个单调递增区间为(  )A.[0,π6]B.[π2,π]C.[π3,5π6]D.[π6,π3]【答案】C【解析】由题意知,f(x)=2sin(ωx+φ-π4),所以g(x)=f(x-π3)=2sin(ωx-ωπ3+φ-π4),因为g(x)的最小正周期为π,所以2πω=π,解得ω=2,所以g(x)=2sin(2x-2π3+φ-π4),由x=π3为g(x)的一条对称轴,

5、则φ-π4=π2+kπ(k∈Z),即φ=3π4+kπ(k∈Z),因为

6、φ

7、<π2,可得φ=-π4,所以函数g(x)=2sin(2x-7π6),令-π2+2kπ≤2x-7π6≤π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ,(k∈Z),当k=0时,π3≤x≤5π6.故选C.3.已知函数f(x)=4sin(3x-π6)的定义域为[n,m],值域为[﹣4,2],则m﹣n的最大值是(  )A.πB.2π3C.4π9D.2π9【答案】C【解析】∵-4≤4sin(3x-π6)≤2,∴-1≤sin(3x-π6)≤12,∴满

8、足条件的3x-π6的最大范围是2kπ-7π6≤3x-π6≤2kπ+π6(k∈Z),解得2kπ3-π3≤x≤2kπ3+π9(k∈Z),故m﹣n的最大值是π9+π3=4π9.故选C.4.将函数f(x)=2cos2x-cos(2x+π2)的图象向右平移π4个单位,得到函数y=g(x)的图缘,则函数y=g(x)的一个极大值点为(  )A.π8B.3π8C.5π8D.7π8【答案】B【解析】f(x)=cos2x+1+sin2x=2sin(2x+π4)+1,故g(x)=2sin(2x-π4)+1.令2x-π4=π2+2kπ,得x=

9、3π8+kπ,取k=0,可得x=3π8为极大值点.故选B.5.锐角△ABC的内角A,B,C的对边分别为a,b,c且a=1,bcosA﹣cosB=1,若A,B变化时,sinB﹣2λsin2A存在最大值,则正数λ的取值范围是(  )A.(0,33)B.(0,12)C.(33,22)D.(12,1)【答案】A【解析】因为a=1,bcosA﹣cosB=1,由正弦定理得:sinBcosA﹣cosBsinA=sinA,即:sin(B﹣A)=sinA,故B﹣A=A,或B﹣A+A=π(舍),故B=2A.因为△ABC为锐角三角形,所以0

10、π2,解得π60π3+α<π2,解得:0<α<π6.所以tan0<λ

11、φ

12、<π2)的图象上,为了得到函数y=sin(2x+π3)(x∈R)的图象,只需把曲线f(x)上所

13、有的点(  )A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向右平行移动π12个单位长度D.向左平行移动π12个单位长度【答案】D【解析】点A(π6,1)在函数f(x)=cos(2x+φ)(

14、φ

15、<π2)的图象上,所以f(π6)=cos(π3+φ)=1,由于

16、ϕ

17、<π2,整理得:φ=-π3.故f(x)=cos(2x-π3),将函数的图象向左平移π12个单位得到y=cos[2(x+π12)-π3]=cos(2x-π6)=sin(π2+2x-π6)=sin(2x+π3)的图象.故选D.7.如图,是函数f(

18、x)的部分图象,则f(x)的解析式可能是(  )A.f(x)=

19、sinx+cosx

20、B.f(x)=sinx2+cosx2C.f(x)=

21、sinx

22、+

23、cosx

24、D.f(x)=sin

25、x

26、+cos

27、x

28、【答案】B【解析】由于f(x)的图象关于y轴对称,是偶函数,排除选项A;当x>1时,f(x)的图象落在y轴下方,可以排除选项C;选项

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。